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A B S T R A C T

The dynamics of a CubeSat orbiting a binary asteroid system can be quite complex due to the irregular
gravitational fields of the two bodies and the significant effect of the Solar radiation pressure. Furthermore,
the large distance to Earth and the small size of the bodies result in difficulties in the observational process
and brings about significant uncertainties in the modelling of the dynamics. In this work, the robust stability
and mission performance of orbits in a binary asteroid system under uncertainty are studied with three novel
dynamics indicators. The uncertainty in the dynamics is propagated with a polynomial algebra over the space
of Taylor polynomials and the indicators are derived from the coefficients of the propagated polynomials. These
indicators are found to show accurately the regions of robust stability and bounded motion around Didymos.
In addition to the indicators, the observability of Dimorphos for different initial conditions is also studied. The
analysis shows a correspondence between the level of robust stability and the size of the observability bounds,
albeit the geometry of certain orbits limits the potential maximum observability.
1. Introduction

The Asteroid Impact and Deflection Assessment (AIDA) is a col-
laborative mission to test the effectiveness of a kinetic impactor to
change the trajectory of the binary asteroid system (65803) Didymos
consisting of the primary body Didymos and smaller moon Dimorphos.
ESA’s contribution to AIDA, the Hera mission, will visit the asteroid
in late 2026 after NASA’s DART spacecraft impacted Dimorphos in
September 2022. Hera aims to characterise the physical properties of
the binary system and investigate the consequence of the impact in
more detail [1]. Besides the larger Hera mother spacecraft, two Cube-
Sats (called Milani [2] and Juventas [3]) will be released into orbits
around the system. The Hera spacecraft plans to follow hyperbolic arcs
around the system, while the CubeSats will use the natural dynamics
of the system to orbit more closely to the bodies (for Milani, this only
holds for the final phase of the mission as mainly it will also use
hyperbolic arcs). The dynamical environment around a binary asteroid
system is characterised by a weak and irregular gravity field from both
bodies, and a significant influence from the solar radiation pressure
(SRP) effect [4]. This makes the orbit design process for the CubeSats
more challenging.

Due to the complex dynamics around a binary asteroid system, it is
important to find specific orbits that remain stable for longer periods
of time, as this can significantly reduce the amount of station-keeping
maneuvers and reduce the risk of an impact or escape from the system
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in case of failures. In [5] the stability of orbits close to the bodies were
investigated by analysing the lifetime of a large range of different orbits
using numerical investigations. It was shown that the SRP has a large
effect on the lifetime of certain orbits. Further search for stable orbits
around Didymos in [6] showed that some orbits that were found to
be nominally stable, e.g. Lagrange point orbits, are not stable anymore
under larger variations in the state vector by looking at the percentage
of orbits that survive through a Monte Carlo analysis. Another method
of trajectory analysis was performed in [7], where the Lagrangian
Coherent structures (LCS) were identified for an asynchronous binary
asteroid system, which are the non-autonomous counterparts to in-
variant manifolds. More recently, [8] analysed the different dynamical
regimes around Didymos and determined favourable trajectories by
employing a waypoint strategy where the orbit control system is used
more frequently.

In the previously mentioned studies, only the nominal system was
investigated, or only after the nominal design was performed were
the uncertainties included. This is more time intensive, and for larger
uncertainties it can affect which orbits are determined to be stable [6].
Due to the difficulty of accurately modelling asteroids from remote ob-
servations, uncertainties in the model variables can be larger compared
to other missions [9]. The main sources of uncertainties in small body
exploration are discussed in [10]. A technique based on the expansion
vailable online 20 December 2022
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of the uncertain state in terms of Taylor polynomials was used to
determine the effect of uncertainties on the stability of a spacecraft
around an asteroid in [11]. This technique was able to analyse the
effects of non-spherical gravity uncertainties, and found that the motion
is sensitive to variations in the 𝐶22 term. Further analyses on the
effect of uncertain SRP and asteroid mass was performed in [12,13].
These studies highlighted the importance of accounting for the effect
of uncertainties on the stability of orbits around an asteroid.

Based on the previously mentioned studies, novel indicators were
proposed by the authors in [14] to analyse the effect of uncertainties
in dynamical systems. This work further builds upon this by analysing
a dynamical system that more closely represents that experienced by
the Hera CubeSats, and includes several other uncertainties (i.e. the
initial state, Didymos shape parameters, and the SRP force) which
allow for the determination of stable orbits that are also robust against
these dynamical uncertainties. Additionally, the indicators are adapted
to allow for the use of other state representations. Furthermore, the
paper presents an analysis of the observability of Dimorphos for a
range of possible orbits. This second objective, combined with the
robust stability of the orbit, provides a measure of the overall mission
performance.

The paper is structured as follows. First, in Section 2 the dynamical
models used for the orbital motion of a spacecraft in the Didymos
binary system are discussed. Afterwards the robust stability indicators
are introduced in Section 3. Additionally, the observability analysis to
provide an overall mission performance is discussed in Section 4. The
final results will be presented in Section 5, and finally a conclusion and
recommendations for possible future work is given in Section 6.

2. Dynamics in the Didymos system

The system studied for this work is the Didymos binary system
consisting of the main body called Didymos (in other works also known
as Didymain) and the secondary body Dimorphos (also known as
Didymoon). A summary of the results of various observation campaigns
to describe the physical models of the system can be found in [15], and
is summarised here in Table 1.

The equations of motion of the CubeSat are described in a quasi-
inertial Didymos equatorial reference frame (see Fig. 1). This means
that the heliocentric motion of the Didymos system is not taken into
account, as the time frames of the simulations discussed here are
significantly shorter than the dynamical timescales of the motion of
the system around the Sun. It is also assumed that the motion of
Dimorphos around Didymos is described by a Keplerian orbit (with
orbital parameters shown in Table 1). The 𝑥–𝑦 plane of the reference
frame is defined to be in the binary’s orbital plane, where the 𝑥-axis
points in the direction of the Sun. The 𝑧-axis is parallel to the binary
orbit normal. The rotational motion of both bodies is described by a
uniform rotation around the reference frame’s 𝑧-axis, and coincides
with the inertial frame at time 𝑡 = 0. Didymos rotates at a speed of
0.0442 deg/s, whereas Dimorphos is tidally locked with the primary
and thus rotates at the same speed as the mean motion of its orbit
around the primary. As the obliquity of the binary orbit is around
175 degrees with respect to the heliocentric orbit, the reference frame
is flipped with respect to the 𝐽2000 frame, and the Sun is located 5
degrees above the Dimorphos orbit plane and thus 5 degrees above the
𝑥-axis of the quasi-inertial reference frame.

The equations of motion in the quasi-inertial frame 𝐼 can be de-
scribed as follows:

𝑭 𝐼
𝑡𝑜𝑡 = 𝑭 𝐼

𝑔,𝑝𝑟𝑖𝑚 + 𝑭 𝐼
𝑔,𝑠𝑒𝑐 + 𝑭 𝐼

𝑆𝑅𝑃 + 𝑭 𝐼
𝑔,𝑆𝑢𝑛, (1)

where the specific forces of influence are the primary’s gravity 𝑭 𝐼
𝑔,𝑝𝑟𝑖𝑚,

the secondary’s gravity 𝑭 𝐼
𝑔,𝑠𝑒𝑐 , the SRP 𝑭 𝐼

𝑆𝑅𝑃 , and the gravity of the Sun
𝑭 𝐼

𝑔,𝑆𝑢𝑛.
For grid 2, the effect of 𝑒 on the terminator orbits (see 𝑖 = 90◦ from
578

ig. 3) is investigated. The results are shown in Fig. 5. The eccentricity
Table 1
Physical parameters of the Didymos system, taken from [15].
System mass 5.28 (± 0.54) ⋅ 1011 kg
Mass ratio 0.0093 ± 0.0013
Heliocentric eccentricity 0.38 ±7.7 ⋅ 10−9

Heliocentric semimajor axis 1.64 AU ± 9.8e−9 AU
Heliocentric inclination 3.41 +/−2.4e−6 deg
Binary Orbit Obliquity 175 +/−9 deg

Primary

Diameter 780 m ± 3 m
Rotational Period 2.26 h ± 0.0001 h
Ellipsoid semi-axes (a, b, c) 399, 392, 380 m

Secondary

Diameter 164 m ± 18 m
Ellipsoid semi-axes (a, b, c) 103, 79, 66 km
Binary eccentricity 0.03 (upper limit)
Binary semimajor axis 1.19 km
Binary inclination 0.0 deg

can be seen to have a significant effect on the robust stability of an
orbit. For higher semi-major axes, the eccentricity can be increased and
the orbit remains relatively stable. While for low semi-major axes, small
initial eccentricities can already lead to unstable orbits. Small values of
𝑒 result in close approaches to the asteroid system in the case of low
𝑎, which results in destabilising effects due to the higher gravitational
acceleration.

A set of sample trajectories from a similar Monte Carlo analysis as
before are also plotted in Figs. 6(a) and 6(b). From these figures it
seems as if trajectories from E are more stable then expected compared
to F. However, from the evolution of the distance from the centre
of Didymos and the velocity, seen in Fig. 7, it can be seen that the
amplitude for both variables are decreasing over time for F. Whereas
for E these are slightly increasing over time.

Here, a spherical harmonics model of Didymos is considered to
calculate the force due to its non-spherical shape. The potential for the
spherical harmonics model is given by [16]:

𝑈 (𝑟, 𝛿, 𝜆) =
𝜇
𝑟

∞
∑

𝑙=0

𝑙
∑

𝑚=0

( 𝑟0
𝑟

)𝑙
𝑃𝑙𝑚(sin 𝛿)[𝐶𝑙𝑚 cos𝑚𝜆 + 𝑆𝑙𝑚 sin𝑚𝜆] (2)

where 𝑟 is the radial distance from the center of the body, 𝛿 is the
atitude, 𝜆 is the longitude, 𝜇 is the gravitational coefficient of the
ody, 𝑟0 is a normalised radius which is often taken as the mean or
aximum radial size of the body, 𝑃𝑙𝑚 are the Associated Legendre

unctions (their expressions can be found in [4]), and 𝐶𝑙𝑚 and 𝑆𝑙𝑚
are the Stokes coefficients which represent the mass distribution of the
body. The Stokes coefficients for Didymos are calculated based on the
measured ellipsoidal shape parameters of Didymos, which are shown
in Table 1, using the following equations [17]:

𝐶20 =
1

5𝑅2
(𝑐2 − 1

2
(𝑎2 + 𝑏2)) = −0.016 (3)

𝐶22 =
1

20𝑅2
(𝑎2 − 𝑏2) = 1.82𝑒 − 2 (4)

𝐶40 =
15
7
(𝐶2

20 + 2𝐶2
22) = 5.5𝑒 − 3 (5)

𝐶42 =
5
7
𝐶20𝐶22 = −2.06𝑒 − 5 (6)

𝐶44 =
5
28

𝐶2
22 = 5.91𝑒 − 7 (7)

For the main purpose of trajectory design, the spherical harmonics
terms up to and including the fourth order need to be considered [18].
In the case of Didymos, the 𝐶20 and 𝐶22 terms are at least one order of
magnitude larger than the higher order terms of the gravity field. As
a large uncertainty of about 10 percent is considered in these second
order coefficients, the higher order terms will have a significantly
lower impact on the gravitational acceleration compared to the effect
of the large uncertainties in 𝐶 and 𝐶 . Therefore, the spherical
20 22
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Fig. 1. The quasi-inertial Didymos equatorial reference frame and its orientation with respect to the J2000 ecliptic reference frame and the difference between Dimorphos’ orbit
and the Sun direction.
Fig. 2. Diagram showing two sets being propagated. The grey shaded area is where
the actual trajectories are located and the black square represents the range of the set.
Set A represent the propagation through more non-linear dynamics while set B has
larger variance but is less non-linear.

harmonics acceleration is truncated at the second order and degree.
Similarly, higher fidelity models based on the current polyhedron shape
of Didymos (e.g. see [19]) would increase the accuracy of the calculated
trajectories for the deterministic case, but for the uncertain case the
accuracy improvement is less significant due to the uncertainties in the
physical parameters considered for these models.

There are several methods to calculate the acceleration from Eq. (2).
In this work, the representation of the spherical harmonics acceleration
of [20] is used, where a transformation from the body frame to the
inertial frame is needed. As the rotation axis of the primary is aligned
with the 𝑧-axis of the inertial frame, only a rotation matrix around the
𝑧-axis is needed.

As the orbits considered are at a minimum distance of 2 km from the
Didymos centre, the secondary is considered to have a point mass grav-
ity field, as was shown to be sufficiently accurate for these dynamical
regimes in [8]. The gravitation of the Sun is assumed to be described
by a point mass as well, due to the large distance between the asteroids
and the Sun.

For the SRP acceleration, a cannonball radiation pressure model
is used. The acceleration for this model is given by the following
formula [16]:

𝑎𝑆𝑅𝑃 = −(1 + 𝜅𝑠)
𝑃0 ⋅

𝒓 − 𝒓⊙
3

(8)
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𝐵
|𝒓 − 𝒓⊙|
where 𝜅𝑠 is the albedo of the spacecraft, 𝑃0 is the solar constant, 𝐵 is the
mass-to-area ratio of the spacecraft, 𝒓 is the vector between Didymos
and the spacecraft, and 𝒓⊙ is the vector between Didymos and the Sun.
As was discussed before, the relative position of Didymos with respect
to the Sun remains constant, and is located at a distance of 1.831 AU
(The distance on July 2027, which is during the operational phase of
the two CubeSats [21]). In this SRP model the specific difference in
reference areas between the different sides of the CubeSat are not taken
into account, as the uncertainties in the reference area considered in
this work include these differences. The analysis of the effect of the
(uncertain) attitude on the SRP force, similar to [22], is left for future
work. The nominal value for the mass-to-area ratio of the CubeSat is
taken as 25.86 kg∕m2 (The mass-to-area ratio of Juventas [3]).

3. Robust stability

One class of techniques used for the analysis of stability in non-
linear systems are dynamics indicators, such as the Fast Lyapunov Indi-
cator [23] or the Finite Time Lyapunov Exponent [24]. These indicators
measure the divergence of trajectories starting from nearby initial
conditions. In the case that the dynamical parameters are only known
with a high degree of uncertainty, these indicators would need to be
recalculated for a sufficiently large amount of different realisations
of these uncertain variables. This can be computationally expensive,
especially when the dimensionality of the uncertain space becomes
large.

Previously in [14], the authors introduced novel indicators that
are able to capture the effect of these uncertain parameters as well.
There, only the effect of the uncertain parameters were investigated.
In this work, the sensitivity of the motion to both variations in the
initial conditions and in model parameters is investigated using these
indicators. This measure of sensitivity quantifies the robust stability of
the motion.

We start by proposing a definition of robust stability. Then, a
short overview of the Generalised Intrusive Polynomial Algebra (GIPA)
technique, which is used to propagate uncertainty and from which the
indicators are derived, is given in Section 3.1. Finally, the indicators
used in this work to measure the robust stability are introduced in
Sections 3.2 and 3.3.

Consider a set of initial states at time 𝑡0 given by 𝛺𝒙0 . The set 𝛺𝒙0
represents all possible values of the state vector at time 𝑡0 given the
uncertainties in both the state 𝒙0 = 𝒙(𝑡0) and model parameters 𝜷,
which are combined into the uncertainty vector 𝝃 = [𝒙 , 𝜷]. As this
0
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Fig. 3. The uncertain dynamics indicators for grid 1. The colourmaps represent the value of the respective indicator, thus the amount of variance and non-linearity. The letters
indicate the set of sample orbits that are used to verify this grid, which are shown in Fig. 4.
set is propagated through the dynamical system, the set at any given
future time is given by 𝛺𝒙𝑡 (𝝃), which represents all possible values for
the state at time 𝑡 from realisations of 𝝃 at time 𝑡0. This can be defined
formally as follows:

𝛺𝒙𝑡 = {𝒙(𝑡, 𝝃) | ∀ 𝝃 ∈ 𝛺𝝃}, (9)

where 𝛺𝝃 is a bounded uncertainty set and the states are propagated
through the dynamical system 𝒇 (𝒙, 𝜷, 𝑡) as follows:

𝒙𝑡 = 𝒙(𝑡) = 𝒙0 + ∫

𝑡

𝑡0
𝒇 (𝒙, 𝜷, 𝜏)𝑑𝜏. (10)

The variation of the volume of the set and its shape over time are
a measure of the evolution of an ensemble of trajectories induced by
multiple realisations of 𝝃. If the trajectories are moving apart over
time one would expect an increase in the volume of the set. On the
other hand the set can stretch in one particular direction without
increasing its volume. If the trajectories in the ensemble grow apart,
whether increasing the volume of the set or just by stretching it in
some directions, we call the process diffusive. The degree to which
the trajectories in the ensemble grow apart is a function of the level
of uncertainty and of the dynamics governing the evolution of each
trajectory.

We can now provide a definition of robust stability.

Definition 3.1 (Robust Stability). Given the uncertainty set 𝛺𝝃 , the ini-
tial bounded set 𝛺𝒙0 and propagated states (10), consider a restriction
𝛺𝒚𝑡 of 𝛺𝒙𝑡 to the subspace defined by only some of the components 𝒚𝑡
of 𝒙𝑡. A robust stable motion is such that for every realisation of 𝝃 ∈ 𝛺𝝃
every restriction 𝛺𝒚𝑡 is such that ∫𝛺𝒚𝑡

𝑑𝒚𝑡 < 𝜀𝑦, ∀𝑡 > 0. In other words
the motion remains bounded over time in all directions.

Following the definition of diffusion of an ensemble of trajecto-
ries, this means that if the diffusion remains low when parametric
uncertainties are also considered, the orbit is defined to be robust
stable. A robust stable orbit around an asteroid thus shows that the
spacecraft will be stable, even if the true environment is different
from the nominal dynamical model. Comparing the measure of robust
stability between different initial conditions allows for the comparison
of different regions in phase space against each other to determine
regions of less sensitive motion.
580
In the following we will develop scalar indicators that capture the
evolution of 𝛺𝒙𝑡 and will show how the value of these indicators gives
an indication of the level of robust stability. The indicators will be
derived from the propagation of the uncertainties through the dynam-
ics. In this work, the uncertainty propagation is performed using the
Generalised Intrusive Polynomial Algebra (GIPA) technique proposed
in [25]. A brief overview of GIPA is given in Section 3.1.

3.1. Generalised intrusive polynomial algebra

To obtain an exact representation of the set 𝛺𝒙𝑡 , an infinite number
of samples from 𝛺𝝃 would need to be propagated. Thus, it is desirable
to obtain an approximation of 𝛺𝒙𝑡 . A generally applied approach for
generating an analytical function to describe this set is a polynomial
approximation, given by:

�̃�𝒙𝑡 (𝝃) = 𝑃𝑛,𝑑 (𝝃) =

∑

𝑖=1
𝑐𝑖(𝑡)𝛼𝑖(𝝃), (11)

where 𝛼𝑖(𝝃) are a set of multivariate polynomial basis functions, 𝑐𝑖(𝑡𝑓 )
are the corresponding coefficients, and  =

(𝑛+𝑑
𝑑

)

is the number of
terms of the polynomial, where 𝑛 is the degree of the polynomial and
𝑑 is the number of variables.

The GIPA method tries to obtain this final approximation by first
using the 𝛼 basis to approximate the initial set, and then taking the
basis 𝛼 and transforming it to a monomial basis, given by 𝜙. A set of
elementary operations, corresponding to the floating point operations
⊕ ∈ {+,−, ⋅, ∕}, between the different polynomials in this basis is
then constructed. With this setup only one set of operations needs to
be defined for the monomial space, together with a transformation
from the desired basis to the monomial basis. Then, for any operation
between two functions 𝑓𝑎 and 𝑓𝑏, the corresponding operations for their
polynomial approximations, 𝐹𝐴 and 𝐹𝐵 , is given as follows:

𝑓𝑎 ⊕ 𝑓𝑏 ∼ 𝐹𝐴 ⊗ 𝐹𝐵 . (12)

The polynomial space 𝑛,𝑑 (𝛼) and the operations on that space to-
gether form an algebra (𝑛,𝑑 (𝛼), ⊗) of size  , for which any polynomial
part of this algebra is completely defined by its coefficients 𝑐 = {𝑐𝒊 ∶
|𝒊| < 𝑛}. The specific ordering and definition of the indexing vector 𝒊
can be found in [26].
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Fig. 4. Sample trajectories from the uncertain dynamics indicator maps propagated until 𝑡𝑓 = 8 periods.
Next to the elementary operations, the algebra also needs to be able
to implement a set of elementary functions ℎ(𝑦), e.g. {1∕𝑦, sin(𝑦), exp(𝑦),
log(𝑦), etc.}. For this, the composition operator is used as follows:

ℎ(𝒇 (𝒙)) ∼ 𝐻(𝑦)◦𝐹 (𝒙). (13)

where 𝐻(𝑦) is the univariate polynomial approximation of ℎ(𝑦) and 𝑓 (𝒙)
a multivariate function with 𝐹 (𝒙) its polynomial approximation. In this
case the composition operator is defined as:

◦ ∶ 𝑛,1(𝜙) × 𝑛,𝑑 (𝜙) → 𝑛,𝑑 (𝜙). (14)

With each polynomial basis, the polynomial approximation of the
functions 𝐻(𝑦) ∼ ℎ(𝑦) are performed differently. For example, for
a Taylor polynomial basis these functions are approximated using a
truncated Maclaurin series, whereas for a Chebyshev basis these func-
tions are approximated using an order 100 Chebyshev interpolation.
581
However, it was shown in [25] that for a Chebyshev basis this can
lead to an overestimation of the bounds due to the fact that for these
interpolations an estimate of the range of the polynomial is needed, for
which the algorithm used leads to inaccuracies.

A comparison between a Chebyshev and a Taylor basis for uncer-
tainty propagation in a binary asteroid system has been performed
in [27]. As the uncertainty set can grow quickly in the case considered
here, a Chebyshev basis would allow for better accuracy as it is more ac-
curate for larger sets. However, due to the overestimation of the range
with a Chebyshev basis, there is a large chance that the range of the
expansion intersects with one of the bodies. Since the full range is taken
into account for estimating the elementary functions, the Chebyshev
basis expansion can cause possible divergences and singularities. For
the Taylor basis this is less of a problem as the central point is used.
Therefore, a Taylor basis is used for the rest of this work to avoid the
numerical issues encountered when using a Chebyshev basis.
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𝑥

Fig. 5. The uncertain dynamics indicators for grid 2. The colourmaps represent the value of the respective indicator, thus the amount of variance and non-linearity.
Consider now the initial value problem given as follows:
{

�̇� = 𝒇 (𝒙, 𝜷, 𝑡)
𝒙(𝑡0) = 𝒙0

. (15)

The set of final values 𝛺𝒙𝑡 that result from the set of all possible values
for 𝒙0 and 𝜷 can now be found by representing these variables as mem-
bers of the polynomial algebra (𝑛,𝑑 (𝛼), ⊗), and using any numerical
integrator algorithm (e.g. Runge–Kutta 4) to propagate them to the
desired time 𝑡. The functions and operations in both the numerical
integrator and dynamical models (e.g. spherical harmonics gravity) are
swapped with their counterparts from the algebra to be able to use
them with 𝑿 and 𝑩, which are the representations of 𝒙 and 𝜷 in the
polynomial algebra.

Due to several features in modern coding languages, e.g. operator
overloading and templates, this can be easily done without chang-
ing the underlying numerical implementations of the dynamics. The
Stratchlyde Mechanical and Aerospace Research Toolbox for Uncer-
tainty Quantification (SMART-UQ) [28] is used for the implementation
of the GIPA method in a computer environment.

3.2. Variance indicator

There are several processes in a (uncertain) dynamical systems
that can cause the diffusion of trajectories over time. This diffusion is
characterised by an increase in the variance of the spatial distribution
of the trajectories [29]. Diffusion in celestial mechanics has been
studied before for several different types of processes, see e.g. [30,31].
In [32,33], and [14], it was found that by studying the coefficients of a
polynomial expansion of the uncertain quantity, the effect of diffusion
on the variance of the trajectories can be studied in more detail. This
work uses this result to develop a dynamics indicator that is based on
the variance of the trajectories calculated from the coefficients of the
polynomial approximation resulting from the GIPA method.

For an orthogonal polynomial basis {𝜳 𝒊}, the statistical moments of
the uncertainty set can be calculated from the values of the coefficients.
First, the mean of the set can be derived as follows:

̄(𝑡) = E[𝑥(𝑡)] ≈ E[𝑃𝑛,𝑑 (𝝃)] = ∫𝛺𝝃

(

∑

𝒊,∣𝒊∣≤𝑛
𝑐𝒊(𝑡)𝜳 𝒊(𝝃)

)

𝜌(𝝃)𝑑𝜉 = 𝑐0, (16)

where the fact that 𝛹0 = 1 and E[𝛹𝑖] = 0, ∀𝑖 ≠ 0 is used to obtain the
result. Using Eq. (16), the covariance matrix can be calculated:

𝛴 (𝑡) = E[(𝒙(𝑡) − �̄�(𝑡))2] (17)
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𝒙

≈ ∫𝛺𝝃

(

∑

𝒊,∣𝒊∣≠0
𝒄𝒊(𝑡)𝜳 𝒊(𝝃)

)

⋅

(

∑

𝒊,∣𝒊∣≠0
𝒄𝒊(𝑡)𝜳 𝒊(𝝃)

)

𝜌(𝝃)𝑑𝜉 (18)

=
∑

𝒊,𝒊≠𝟎
E[𝜳 2

𝒊 ] 𝒄𝒊(𝑡)𝒄
𝑇
𝒊 (𝑡), (19)

where 𝒄𝒊 is a vector containing the specific coefficients for each state
variable.

As discussed in Section 3.1, this work uses a Taylor basis for the
propagation of the uncertainties. As this basis is not orthogonal, the
calculation of the variance cannot be performed as in Eq. (19) [34].
Hence, after the propagation is completed, the Taylor basis is converted
to an orthogonal basis, namely the Hermite basis. The Hermite basis is
orthogonal under the weight function 𝜌(𝑥) = 𝑒−

𝑥2
2 :

∫

∞

−∞
𝐻𝑛(𝑥)𝐻𝑚(𝑥)𝜌(𝑥)𝑑𝑥 = 𝑛!

√

2𝜋𝛿𝑛𝑚, (20)

where 𝛿𝑛𝑚 is the Kronecker delta function. This basis is selected be-
cause of the existence of an analytical relation between the Taylor
polynomial (given by a monomial) and the Hermite polynomial, given
as follows [35]:

𝑥𝑛 = 𝑛!
𝑛∕2
∑

𝑚=0

1
2𝑚𝑚!(𝑛 − 2 𝑚)!

𝐻𝑛−2𝑚(𝑥), (21)

Using the new polynomial basis and the results from Eq. (19), the
variance can be found from the corresponding covariance matrix entry
as follows:

𝜎2𝑥𝑖 (𝑡) = 𝛴𝒙𝑖𝑖 (𝑡) =
∑

𝒊,∣𝒊∣≠0
∣ 𝒊 ∣!

√

2𝜋 𝑐2𝒊 (𝑡). (22)

In further calculations of the variance, the factor ∣ 𝒊 ∣!
√

2𝜋 is
ignored as this remains constant between different initial conditions,
and therefore does not influence the difference in the variance between
the different initial conditions. Taking the maximum variance from the
covariance matrix will give the maximum amount of diffusion in the
direction of the state variables. Thus, in this work the maximum value
of the variance at the final time, i.e.:

𝜂𝜎 = max
𝑖

𝜎2𝑥𝑖 (𝑡𝑓 ), 𝑖 = 1, 2,… , 𝑑 (23)

is used as an indicator to analyse the increase in variance for different
initial conditions.

The variance of Eq. (22) is based on the variance of the Carte-
sian state variables. However, it can be generalised to a state vector
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Fig. 6. Sample trajectories from the uncertain dynamics indicator maps propagated until 𝑡𝑓 = 8 periods for grid 2 and 3.
containing different representations of the state. The Keplerian orbital
elements, i.e. the semi-major axis 𝑎, eccentricity 𝑒, inclination 𝑖, ar-
gument of perigee 𝜔, and right ascension of the ascending node 𝛺,
can give an intuitive view of the geometry of an orbit around the
system. From the mission design perspective, having an orbit with these
elements staying relatively bounded over time and are not sensitive
to off-nominal conditions is important as this allows for predictable
behaviour and low chances of impact or escape. However, in a highly
non-linear and uncertain system, like the one considered here, this is
not always the case and the variance of the possible orbital elements
can grow quickly over time. Therefore, it is important to look at
the evolution of these orbital elements and determine if they remain
relatively bounded over time. Specifically, the 𝑎 and 𝑒 have a large
effect on the shape of the orbit and are thus important elements that
need to stay relatively constant over time.
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Using the same principle as the coefficient based variance for a
general state vector, the diffusion of 𝑎 and 𝑒 can be calculated. Us-
ing the operations defined by the GIPA method, the polynomial ap-
proximations of the state variables can be converted to polynomial
approximations of 𝑎 and 𝑒 using the well-known conversions [36]:

𝑎 = 1
2
𝑟 −

𝑣2
𝜇

(24)

𝒆 = 𝒗 × 𝒉
𝜇

− 𝒓
𝑟
, (25)

where 𝜇 is the gravitational parameter of the central body (Didymos)
and 𝒉 = 𝒓 × 𝒗 is the angular momentum. The eccentricity can then be
obtained by taking the vector norm of Eq. (25). However, a problem
arises when the norm is taken of 𝒆 when the final orbit is close
to circular, as a Taylor approximation of a square root around zero
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Fig. 7. The distance 𝑟 from the centre of Didymos and velocity 𝑣 of different trajectories over time for sample orbits E and F.
diverges. Thus instead the squared eccentricity, |𝒆|2 = 𝑒21+𝑒
2
2+𝑒

2
3 is used

instead. Using Eq. (22), the variance in 𝑎 and 𝑒2 can then be calculated,
representing the diffusion of the shape-based orbital elements.

3.3. 𝑛 + 1 Indicator

The accuracy of the Taylor approximation of the dynamics depends
on several characteristics of the system. In [37], it was found that an
increase in the size of the uncertainty set over time leads to a less
accurate polynomial approximation of the set, due to the truncation
of the polynomial at a certain degree.

Given a degree 𝑛 Taylor approximation 𝑃𝑛,𝑑 (𝒙) of the function 𝑓
around the origin, where 𝑓 is 𝑛+1 times differentiable and the (𝑛+1)th
derivative of 𝑓 is bounded as follows: 𝑓 (𝒂)(𝑛+1) ≤ 𝑀, 𝒂 ∈ (0,𝒙), the
error bound in the approximation because of the truncation at degree
𝑛 can be obtained as follows:

∣ 𝑓 (𝒙) − 𝑃𝑛,𝑑 (𝒙) ∣ ≤
𝑀

(𝑛 + 1)!
𝒙𝑛+1 = 𝑐𝑛+1 ⋅ 𝒙𝑛+1. (26)

As 𝑓 represents the dynamics of the system, and the 𝑛+1 coefficient
is related to the (𝑛 + 1)th derivative of 𝑓 in the region over which the
Taylor approximation is performed, the specific value of this coefficient
can give information on the dynamical behaviour in that region. The
specific value of 𝑐𝑛+1 can be affected by several different factors, e.g. the
propagation time, initial uncertainty size, and the non-linearity of the
system [37]. It can be seen that for a Taylor approximation with a high
𝑐𝑛+1, trajectories that start close together in the domain of the Taylor
approximation can have significantly different behaviours.

An example illustration of this effect is shown in Fig. 2. Two sets,
A and B, are propagated through two different dynamics (this can be
two different dynamical systems or two different regions in phase space
of the same system). At 𝑡𝑓 , the shape of set A has been significantly
deformed because of the non-linearity of the dynamics. Set B has grown
larger compared to set A but has been deformed less, due to the more
linear dynamics which can only cause a rotation and expansion (or
contraction) of the set. Hence, a low degree 𝑛 polynomial can accurately
approximate set B as there are no higher order, non-linear effects,
which causes 𝑐𝑛+1 to be small. If the same order 𝑛 is used for the
approximation of set A, the error in the approximation would be high
as higher order terms are needed to capture the non-linear effects
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that cause this deformation. This leads to a high value of 𝑐𝑛+1 in this
case. Therefore, fixing the degree 𝑛 of the polynomial approximations
(keeping the degree high enough to accurately approximate most of the
phase space) and comparing the values of 𝑐𝑛+1 for different regions of
phase space gives the relative non-linearity of those regions.

The non-linearity of the system, measured by 𝑐𝑛+1, can indicate
chaotic or diffusive behaviour. However, it is noted that they are not
necessarily directly related to each other. For example, in a system
where certain close initial conditions behave significantly different
from each other, but over time remain confided in a certain region of
phase space (e.g. a strange attractor), the non-linearity would be high
but the diffusion would be low. Therefore, it is important to measure
both the variance indicator and the non-linearity indicator as they give
different insights into the dynamics and can be combined to get a better
idea of the robust stability.

In [38], the maximum initial set size for a Taylor approximation was
calculated using the estimated truncation error, and used as a dynamics
indicator for the circular restricted three body problem. Furthermore,
in [11] a Taylor algebra with a truncation error based domain splitting
technique was used as an indicator of the stability of certain orbits
under uncertainties, by measuring the amount of splits at a specific
location in phase space. In this work a similar approach is used,
namely the size of the 𝑛 + 1 degree coefficients is used as an indicator
to determine suitable initial conditions for robust stable orbits. This
method avoids the use of methods like automatic domain splitting,
which decreases the efficiency and ease-of-use of GIPA.

The size of the 𝑛+1 degree coefficients is calculated as follows. First,
a set of initial conditions and model parameters is propagated using the
GIPA method. Second, from the resulting polynomial approximation,
the size of the coefficients of a specific degree 𝑖 are calculated, up to
polynomial degree 𝑛 as follows:

𝑆𝑖 =
∑

|𝒊|=𝑖
𝑐𝒊. (27)

Using the values of 𝑆𝑖 for all the different degrees up to and
including 𝑛, a least-squares fit algorithm is used to get an analytical
expression for the size of the coefficients for a specific degree. To
improve the accuracy and efficiency of the fitting procedure, a linear
fit is performed using the equation as follows:

log𝑆 = log𝐴 − 𝐵 ⋅ 𝑖, (28)
𝑖
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Fig. 8. The uncertain dynamics indicators for grid 3. The colourmaps represent the value of the respective indicator, thus the amount of variance and non-linearity.
Fig. 9. The variance in the semi-major axis 𝑎 and squared orbital eccentricity 𝑒2 at the final time for grid 1. The letters indicate the set of sample orbits that are used to verify
this grid, which are shown in Fig. 4.
where 𝐴 and 𝐵 are constants estimated using the least squares algo-
rithm. Finally, using Eq. (28), the value for the 𝑛+1 degree coefficient
size, 𝑆𝑛+1, can be estimated.

As the 𝑆𝑛+1,𝑗 represents the 𝑛 + 1 coefficient size for each different
state variable, the direction of maximum non-linearity can be found by
taking the maximum value of 𝑆𝑛+1,𝑗 over all state variables. This value
is then used as the indicator as follows:

𝜂𝑛+1 = max
𝑗

𝑆𝑛+1,𝑗 , 𝑗 = 1, 2,… , 𝑑 (29)

4. Observability analysis

From the perspective of mission operations, the robust stability
discussed in Section 3 is an important factor in the selection of an
orbit for a spacecraft as it shows how frequent adjustments need to
be made to the trajectory to keep it within the desired bounds. In
addition, the spacecraft needs to fulfil a certain set of operational and
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scientific requirements that are influenced by the specific orbit the
spacecraft is in. In previous studies [3,8,39] the different constraints
and requirements for the trajectory design of the different spacecraft or-
biting Didymos and observe Dimorphos are discussed. One of the main
important factors that is discussed is the observability of Dimorphos in
terms of lighting for the passive instruments (e.g. optical cameras).

To determine the observability of Dimorphos, several key factors
need to be taken into account [40]. These factors are all related to
the illumination and geometry of the system. It is required for several
instruments on-board the spacecraft to observe the body with sufficient
illumination to determine all the necessary features. First, the angle
between the lines connecting the Sun and Dimorphos, and the space-
craft and Dimorphos is calculated (i.e. the phase angle). If this angle
is smaller then 90 degrees, the illumination is sufficient. Second, it is
determined whether Dimorphos is located in the shadow of Didymos,
where the shape of the shadow is taken to be conical. Finally, it is
determined whether Dimorphos is not located behind Didymos with
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Fig. 10. Maximum and minimum values for the semi-major axis and eccentricity of the different initial conditions and the sample orbits shown for C.
Fig. 11. The variance in the semi-major axis 𝑎 and squared orbital eccentricity 𝑒2 at the final time for grid 2. The dotted line represents the theoretical frozen orbit condition
from Eq. (30).
respect to the position of the spacecraft. At all evaluation points in
an orbit, these three factors are calculated. If they are all shown to
be favourable (i.e. Sun angle less then 90 degrees, not in shadow, and
Didymos is not blocking Dimorphos), then at that time Dimorphos is
deemed observable. If any of these factors are determined to be false,
then Dimorphos is not observable. At the end of a simulation run, the
percentage of time Dimorphos is observable is calculated. This measure
of observability is similar to the one used for the trajectory design of
the close proximity phase of the Hera spacecraft [41].

5. Orbit analysis

The uncertain dynamics are investigated for a set of initial condi-
tions that are generated from a range of Kepler orbital elements. As this
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Table 2
The initial conditions for the three different maps.

Parameter Grid 1 Grid 2 Grid 3

𝑎 [km] [2–6] [2–6] 3
𝑒 [-] 0 [0–0.4] 0
𝑖 [◦] [0–180] 85 [0–180]
𝛺 [◦] 90 90 [0–180]
𝜔 [◦] −90 −90 −90
𝜈 [◦] 0 0 0

is a highly perturbed environment, these orbital elements will quickly
diverge from the classical two-body values (or their original values) and
thus are only used to generate a set of interpretable initial conditions
and to understand the evolution of the shape of the orbit over time.
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Fig. 12. The orbital elements over time for two different test trajectories from grid 2. In 12(a) the bounds are shown, and in 12(b) the results for E are shown in more detail.
Fig. 13. The variance in the semi-major axis 𝑎 and squared orbital eccentricity 𝑒 at the final time for grid 3.
The initial orbital elements are converted to Cartesian coordinates to
perform the integration. Three grids of 80 by 80 points are constructed
from the different initial conditions. For each grid two orbital elements
vary and the other orbital elements remain constant. The specific initial
conditions for each grid are shown in Table 2. The first grid investigates
the effect of 𝑎 and 𝑖 for circular orbits facing the Sun. The second grids
focuses specifically on the terminator orbits and the effect of 𝑒. Finally,
for a fixed 𝑎 the orbital plane is varied with a grid in 𝑖 and 𝛺.

Each point on the three different grids is propagated for five or-
bital periods (calculated from the initial 𝑎), using a Runge–Kutta 4
numerical integrator. Uncertainties are considered in the initial state
(position and velocity), 𝐶20, 𝐶22, and the spacecraft SRP force. The
SRP uncertainty stems from both uncertainty in the parameters and
inaccurate modelling of this force. However, GIPA works with indi-
vidual uncertain variables, hence only parameter 1∕𝐵 is considered to
have an uncertainty in this case, and the inaccurate modelling is not
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considered for this analysis. The uncertainty of the parameter 1∕𝐵 is
directly proportional to the uncertainty in the final acceleration for the
Cannonball SRP model, and can thus represent the total uncertainty in
the SRP force. The state uncertainties are set to a value of 1 percent to
be able to determine the effect of small perturbations in the state. The
model parameters, i.e. 𝐶20, 𝐶22, and 𝐵 will have a larger uncertainty of
10 percent, representing the possible values these parameters can take.
Furthermore, a polynomial degree of 5 is selected as this has previously
been shown to be a good trade-off between speed and accuracy [27].
All values used during propagation are adimensionalized and scaled by
dividing them by the position and period of Dimorphos with respect to
Didymos, based on their respective units. This improves the numerical
efficiency of the integration. Hence, all the indicator values do not have
a unit as well. As the indicators are mainly used in maps to compare
their relative values and find regions of relatively robust stability, their
absolute values are of less significance.
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Fig. 14. Maximum and minimum values for the semi-major axis and eccentricity of
the sample orbits from grid 3.

5.1. Robust stability maps

Fig. 3 shows the result for the 𝜂𝑛+1 indicator and the 𝜂𝜎 indicator for
grid 1. Where the Cartesian state is considered for the 𝜂𝜎 indicator. The
colours in the two plots represent the values of the variance 𝜂𝜎 and non-
linearity 𝜂𝑛+1 indicator. Lower values of both these indicators means
in general that those initial conditions are less sensitive to changes in
both the initial conditions and dynamical parameters, and thus these
trajectories remain more closely bounded. Hence, they can generally
be viewed as being more robust stable than regions with higher values
of the indicators, according to the definition given in Section 3.

Several general regions of interest can be found in these maps. First,
the prograde and retrograde orbits (<∼ 90◦ and >∼ 90◦ respectively)
at larger 𝑎 show unstable behaviour. For these regions, the SRP is
of a similar order with the gravitational force and therefore has a
significant destabilising effect on these orbits. Due to this sensitivity
to the SRP, the uncertainty in the 𝐵 parameter increases the diffusion
of these trajectories as well. Closer to the system, the retrograde orbits
become more stable as the SRP force becomes less significant compared
to the gravity of both bodies. However, the prograde orbits remain
relatively unstable compared to the retrograde ones. The retrograde
orbits experience less influence from the non-spherical gravity contri-
butions due to the high relative velocities with respect to the asteroid.
This also means that the uncertainties in the 𝐶20 and the 𝐶22 value
have less of an influence on these trajectories. Closer to the body, the
influences of both the resonances with the spin of the primary and the
orbital motion of the secondary can be observed in the maps (2:1 mean
motion resonance at 2.1 km and the 3:1 orbital resonance at 2.475 km).
These resonances in combination with the uncertainties in the gravity
field can be seen to cause both stable and unstable behaviour. The
most stable behaviour can be found around the terminator orbit, which
corresponds to previously found results, e.g. [42], showing that these
orbits are robust against uncertainties in the gravity field and SRP force.

To validate the map of grid 1, a Monte Carlo analysis with 1000
samples for a longer period of time of 8 orbital periods of the spacecraft
is performed for four different initial conditions shown in Fig. 3. The
resulting trajectories are shown in Fig. 4 using different colours for the
different Monte Carlo samples. From the robust stability grids, the two
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trajectories A and D are expected to be unstable, which is proven by
the diffusive behaviour among the different sample trajectories and by
the rapid change of the eccentricity and semi-major axis over time of
most sample trajectories. Furthermore, the two stable trajectories B and
C have significantly less diffusion and remain close to the initial orbit.

Finally, the results for grid 3 can be seen in Fig. 8. For these maps
there is a more clear difference between the 𝜂𝑛+1 and 𝜂𝜎 indicators, as
there are several regions and structures in the 𝜂𝑛+1 map which do not
appear in the 𝜂𝜎 map. From the discussion in Section 3.3, it is observed
that 𝜂𝑛+1 is an indicator of the non-linearity, which is not strictly
affected by the diffusion. Hence, it is possible that these factors increase
the 𝜂𝑛+1 more for these regions and structures, therefore changing the
relative value.

The two main regions of unstable motion are similar between the
two indicators. They can be found in the range of 𝑖 ≈ [20◦–70◦],
𝛺 ≈ [40◦–90◦] and for 𝑖 ≈ [0◦–20◦], 𝛺 ≈ [125◦–175◦]. Various robust
stable structures can be found in these maps. As can be seen from Fig. 3,
the value of 𝑎 used for this map is close to the transition where the SRP
force becomes less dominant and the non-spherical shape become more
dominant, as the retrograde orbits go from unstable to stable. This leads
to various different robust stable combinations of 𝑖 and 𝛺.

Two sample initial conditions, G and H, are taken from the two
maps and analysed using a Monte Carlo analysis. The results can be
seen in Figs. 6(c) and 6(d). These analyses match with the expected
robust stability as around G the trajectories diffuse more compared to
H.

Besides the 𝜂𝜎 indicator for the variance in the Cartesian state, the
variance in 𝑎 and 𝑒 is also measured. These indicators are shown for grid
1 in Fig. 9. These maps show how the bounds of the orbital elements
evolve over time due to sensitivity to the state and model parameters. It
can be seen that in general these results agree with the robust stability
indicators from Fig. 3. The orbital elements 𝑎 and 𝑒 remain the most
bounded for terminator orbits and close (< 3 km) retrograde orbits,
whereas the orbits with a high influence of the SRP show high variance.

The results from Fig. 9 can be verified using a similar MC method
as was discussed before. The same sample points, A to D, are used
(see Fig. 9) and the spread and evolution of the trajectories from the
Monte Carlo analysis are investigated in more detail. The bounds of the
orbital elements for the four sample regions are shown in Fig. 10(a).
As expected, the bounds of 𝑎 and 𝑒 for A and D are both increasing
over time, whereas for B and C these remain much more constant. For
C (around the 3:1 orbital resonance), the bounds of 𝑎 seem to shrink
until 3 orbital periods is reached after which the bounds increase again
as can be seen in Fig. 10(b). These results agree with what is expected
from the maps developed in Fig. 9.

The same similarity between the robust stability indicators and the
variance in 𝑎 and 𝑒 of grid 1 can be found for grid 2 in Fig. 11. The
main difference in the variance maps is that the contrast for regions
of high and low robust stability is greater for the orbital elements
maps compared to the Cartesian maps. This shows the sensitivity of
the orbital bounds to the effect of the uncertain dynamics in different
regions of initial conditions. In [42], an analytical estimate of the
eccentricity as a function of semi-major axis for a stable terminator
orbit conditions was derived as :

𝑒 = cos𝛬, (30)

tan𝛬 =
3(1 + 𝜅𝑠)𝑃0

2𝐵

√

𝑎
𝜇𝑑𝑖𝑑𝜇𝑆𝑢𝑛𝑎𝐻 (1 − 𝑒2𝐻 )

, (31)

where 𝑎𝐻 and 𝑒𝐻 are the heliocentric semi-major axis and eccen-
tricity. This function is shown in the maps of Fig. 11 as a white dotted
line. It can be seen that for a larger 𝑎, this theoretical value is located
in the region with the low 𝜂𝜎 and low 𝜂𝑛+1 region, thus it still is able to
predict the stable 𝑒 values well. As the orbit gets closer to the system,
other unmodelled perturbations like the gravity of Dimorphos reduce
the accuracy of Eq. (30) and thus show more unstable behaviour.

The orbital element bounds for sample orbits from E and F are
shown in Fig. 12. The stable region F has relatively constant bounds



Acta Astronautica 203 (2023) 577–591I. Fodde et al.
Fig. 15. Minimum and maximum observability, shown in percentage of the trajectory for which Dimorphos is observable for grid 1.
Fig. 16. Minimum and maximum observability, shown in percentage of the trajectory for which Dimorphos is observable for grid 2.
and also has a decreasing mean value for 𝑒. In contrast, the bounds for
E are growing slowly. Furthermore, due to the orbital resonance around
this initial condition, an empty region is found after around 4 periods.
This resonance alters the orbits around this region to form two different
groups.

For grid 3, the results are shown in Fig. 13. The highest values for
the variance of 𝑎 are lower compared to the previous maps, showing
some more structure in both the unstable and stable regions. It can
be seen that there are several structures of stable behaviour within
the unstable regions. Furthermore, the region around 𝑖 = 180◦ shows
the lowest variance in the orbital elements, representing regions of
bounded motion.

The bounds for the sample orbits in Fig. 14 show again the differ-
ence between the stable and unstable region. The difference is relatively
small for 𝑎. However, for 𝑒 it can be seen that the difference in both
the growth of the mean and variance is larger. The maps show as well
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that the effect of 𝛺 is more significant for the prograde motion, where
more regions of high variance are found.

The analysis performed using the indicators in this section does not
directly measure the safety against impact, as the time period over
which the polynomial propagation is performed is not long enough to
find impact trajectories. However, for Monte Carlo analyses of several
unstable orbits for longer periods of time (e.g. Fig. 4(a)), several orbits
were found to impact with one of the asteroids in the system. Therefore,
it is implied here that orbits from regions of high indicator values of the
robust stability maps have a higher risk in terms of possible impacts. A
more quantitative analysis of this impact risk is left for future work.

5.2. Secondary asteroid observability

To test the ability of this method to analyse the mission parameters
and performance, the observability for the three grids is measured.
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Fig. 17. Minimum and maximum observability, shown in percentage of the trajectory for which Dimorphos is observable for grid 3.
The upper and lower bounds for the observability is shown in Fig. 15
for grid 1. The stability of the region around the terminator orbit makes
the bounds of the observability lie close together (30–50 percent). The
unstable regions allow for both lower minimal values (higher chance
of bad observability conditions), but also higher maximum values
(higher chance of good observability). This is caused by the diffusion
of trajectories allowing for a wider spread of trajectories with different
geometries. Part of these trajectories allow for better observability
conditions. Therefore, from these plots a trade-off can be made among
the robust stability and boundedness shown in Figs. 3 and 9, and the
observability of the secondary in Fig. 15.

The same effect can be seen for grid 2 in Fig. 16. However, there is a
much larger difference between the uncertain dynamics maps and the
observability maps for grid 3, as is shown in Fig. 17. The terminator
orbit is again shown here to have much smaller difference between
the maximum and minimum bounds, indicating that the geometry for
these orbits is less sensitive to state and model parameter uncertainties.
Due to these small bounds, the terminator orbits minimise the worst
case scenario observability while also lowering the maximum possible
observability. The coverage of Dimorphos was not taken into account
for this analysis, however it is noted here that the terminator orbits
tend to observe the same face of the asteroid, reducing the coverage of
the body from these orbits [41].

6. Conclusion

In this paper, a novel method of determining the robust stability is
applied to study the dynamics under uncertainties around the Didymos
system. This method uses a polynomial expansion together with an
algebra over the space of the polynomials to calculate the evolution
of an uncertainty set through the dynamical system. A set of different
uncertain dynamics indicators, which are derived from the polynomial
coefficients, are then used to determine the relative robust stability
between the different orbits.

Using these indicators, it is shown that the terminator and close
retrograde orbits show robust stable behaviour. This corresponds with
previous results (e.g. [22]) which also found that these types of orbits
are stable. This verifies the ability of the indicators to find robust
stable orbits, and thus allows for the further study of other features
of the uncertain dynamics. When the motion is close to the body, the
stability of the terminator orbit is not guaranteed as the dynamical
structure becomes more complex due to the effect of the non-spherical
590
gravity, the uncertainties in 𝐶20 and 𝐶22, and the presence of resonances
with Dimorphos’ orbit. Furthermore, slightly eccentric terminator or-
bits show stable behaviour for higher semi-major axes (corresponding
to previous analytical predictions [42]), but the range of stable ec-
centricities decrease if the semi-major axis decreases. Finally, several
different stable regions besides the terminator plane were found when
changing the ascending node and inclination, allowing for different
options when the terminator orbit is not desirable.

Additionally, the performance of certain orbits in terms of the
observability of Dimorphos are analysed. It is found that in general the
stable regions show smaller bounds for the observability, minimising
the worst case scenario but also not allowing the maximum observ-
ability to become larger compared to other initial conditions. This is
especially the case for the terminator orbits, showing less favourable
geometry for the maximum observability.

For future work, more potential initial conditions can be considered,
e.g. quasi-satellite orbits. Furthermore, improvements in terms of the
𝜂𝑛+1 indicator to separate the effects of the diffusion and non-linearity
could increase its effectiveness and the amount of information that can
be extracted from this indicator.
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