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ESA’sHeramission aims to visit binary asteroidDidymos in late 2026, investigating its physical characteristics and

the result of NASA’s impact by the DART spacecraft in more detail. Two CubeSats onboard Hera plan to perform a

ballistic landing on the secondary of the system, called Dimorphos. For these types of landings the translational state

during descent is not controlled, reducing the spacecraft’s complexity but also increasing its sensitivity to deployment

maneuver errors and dynamic uncertainties. This paper introduces a novelmethodology to analyze the effect of these

uncertainties on the dynamics of the lander and design a trajectory that is robust against them. This methodology

consists of propagating the uncertain state of the lander using the nonintrusive Chebyshev interpolation (NCI)

technique, which approximates the uncertain dynamics using a polynomial expansion. The results are then analyzed

using the pseudo-diffusion indicator. This indicator is derived from the coefficients of the polynomial expansion,

which quantifies the rate of growth of the set of possible states of the spacecraft over time. The indicator is used here to

constrain the impact velocity and angle to values that allow for successful settling on the surface. This information is

then used to optimize the landing trajectory by applying the NCI technique inside the transcription of the problem.

The resulting trajectory increases the robustness of the trajectory compared to a conventional method, improving

landing success by 20% and significantly reducing the landing footprint.

Nomenclature

a, b, c = ellipsoidal shape parameters, m
Clm, Slm = spherical harmonics Stokes coefficients
Pn;d = polynomial of order n with d variables

R = spherical harmonics reference radius, m
Ti = Chebyshev polynomial of the first kind of order i
u = decision vector

v−∕� = incoming/outgoing landing velocity vector, m/s

x = spacecraft translational state, m, m/s
β = model parameter vector
~γ = pseudo-diffusion indicator
δ, λ = geographical latitude and longitude, deg
ϵ = coefficient of restitution
θland = impact angle, deg
μ = gravitational parameter, m3/s2

μm = mass ratio, m2∕�m1 �m2�
Σ = covariance matrix
σ = standard deviation
Ω = uncertainty set

I. Introduction

M ISSIONS to minor solar system bodies like asteroids, comets,
and planetary moons provide several benefits: increasing our

knowledge on the origins of the solar system, improving our capability
to defend ourselves against potentially hazardous objects, and leading
to future use of the resources located within these bodies [1]. One of
these missions, NASA’s Double Asteroid Redirection Test (DART),
part of the Asteroid Impact and Deflection Assessment (AIDA) col-
laboration between NASA and ESA, successfully impacted the sec-
ondary asteroid of binary systemDidymos (68503), calledDimorphos.
This mission showed the potential of a kinetic impactor for deflecting
an asteroid heading toward Earth as it was able to changeDimorphos’s
orbital state around the primaryasteroid [2].ESA’sHera spacecraftwill
arrive in late 2026 to do a more in-depth investigation of the result of
the impact and perform additional scientific measurements of the
asteroids. Two CubeSats are located onboard of Hera, called Milani
and Juventas, which act as additional scientific payloads, ending their
missions with a landing on Dimorphos [3].
Landings on the surface of asteroids are incredibly valuable in terms

of scientific return, as the spacecraft–surface interaction provides
direct information on the internal structure and material properties of
the asteroid while their instruments can do some in situ measurements
to characterize the asteroid in more depth. Various previous missions
performed landings or surface touchdowns, among them theHayabusa
mission [4], Rosetta [5], Hayabusa 2 [6], andOSIRIS-REx [7]. Precise
landings require a complex and precise guidance, navigation, and
control (GNC) system, increasing the complexity of the spacecraft.
As theHera CubeSats have a limited size andmass budget, a dedicated
landing GNC system might not be feasible. Therefore, ballistic land-
ings, i.e., with no closed-loop control of the translational state during
descent, are good options for the landing maneuver. The main draw-
backs of ballistic landings are their sensitivity to errors in the deploy-
ment maneuver and uncertainties in the dynamic parameters [8].
Therefore, when designing ballistic landing trajectories, the impact
of uncertainties needs to be taken into account.
The complex dynamics due to the large influence of the primary,

nonspherical shape of both bodies and the low gravitational forces
make the landing trajectory design difficult. Initial studies on ballistic
landing trajectories investigated deploying the spacecraft on natural
manifold trajectories from the L2 point of binary asteroid systems
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[9–12]. Specifically, the authors of Ref. [13] looked into landing on
Dimorphos using this methodology, but deploying at further, i.e.,
safer, distances away from the L2 point. This technique involves
deploying the spacecraft with a higher velocity onto a stablemanifold
toward L2 and onto the unstable manifold (ensuring transfer to the
inward branch of the manifold by increasing the initial velocity),
which intersects with the surface of Dimorphos. These trajectories
were shown to have low touchdown velocities and a high likelihood
for settling on the surface, but were also found to be sensitive to
uncertainties in the deployment maneuver and surface character-
istics. To generalize these low-energy landing trajectories to be able
to land all across the surface of the secondary, approaches involving
propagating vertical landing trajectories backward in combination
with a bisection-basedmethod to find theminimum energy trajectory
for a certain location were proposed in [8,14] The bouncing and
surface motion of landers has also been investigated in detail in
[15–19]. These studies highlight the importance of implementing
accurate and efficient models for the dynamics of this phase of the
landing trajectory design, and it can have a large influence on to the
lander settling location and success of the landing itself.
Besides the complex dynamics, another problem in the trajectory

design process is the highly uncertain environment in which the
spacecraft needs to operate, as ground-based observations are not
able to determine the asteroid’s property with a high degree of
accuracy [20]. Most previous missions dedicated several months of
mission time at arrival, reducing the uncertainties by observing the
system from large distances; see, e.g., the NEAR mission [21]. This
increases the mission costs as intensive ground segment efforts are
required, which does not necessarily scale down for smaller CubeSat
missions. Thus, other techniques to deal with the inherent uncertain-
ties should be explored. Often, these uncertainties are included after a
nominal trajectory has already been designed to check the sensitivity
of the trajectory to them. This decoupling is inefficient and can lead to
worse performances as conservative safety margins are added [22].
Furthermore, conventional methods for this process, like linear
covariance analysis, require the dynamics to be close to linear and/
or the uncertainties to be small. More accurate techniques like the
Monte Carlo method, on the other hand, require a large amount of
samples to be propagated through the dynamics (error is roughly
proportional to 1∕ N

p
, where N is the amount of samples) [23].

Hence, this technique is not numerically efficient enough to be used
in applications like determining phase space structures or trajectory
optimization algorithms, which require large amount of initial con-
ditions to be investigated and thus need more efficient uncertainty
propagation and quantification techniques.
This study introduces a novel methodology for the analysis and

design of ballistic landing trajectories, which takes into account the
uncertainties present in the system throughout the full process. The
proposed method first uses nonintrusive Chebyshev interpolation
(NCI) to propagate the uncertain state of the lander for a large amount
of landing conditions (velocity magnitude and direction). For each
landing condition, the rate of growth of the uncertain state is then
determined using the pseudo-diffusion indicator [24]. This information
allows for the discovery of conditions that lead to a high probability of a
successful landing, which is then used to design the final ballistic
landing trajectory. This trajectory is again designed with the uncertain-

ties taken into account by applying NCI inside the trajectory optimi-
zation transcription and minimizing the final variance of the state.
The paper is structured as follows: First, Sec. II discusses the specific

dynamic models used here. Then, Sec. III explains the uncertainty
propagation technique used as well as introduces the pseudo-diffusion
indicator, which is used to map the different dynamic regimes and
quantify the influence of uncertainties on the landers motion. After-
ward, these methods are applied to the surface motion in Sec. IV,
investigating the optimal conditions for settling on the asteroid surface
and how the uncertain surface conditions influence this. Then, Sec. V
investigates what the minimal touchdown velocity is for different
landing locations. Finally, Sec. VI applies the uncertainty propagation
method inside a trajectory optimization scheme, using all the informa-
tion from the previous analyses to design a robust landing trajectory.
The work is then concluded in Sec. VII.

II. Binary Asteroid Dynamics

The two bodies part of the Didymos (68503) binary asteroid
system are the main asteroid Didymos with a diameter of around
780mand the secondary asteroidDimorphos of around 164m,which
is the target body for the landing discussed in this work. The physical
parameters determined from the pre- and postimpact observations of
the system can be found in Table 1. The effect of the DART impact on
Dimorphos is mainly seen in the change of orbital period of 32
minutes and thus a change in the semimajor axis of 48 m [2]. The
eccentricity is also slightly increased, to a value of around 0.03. As
this value is low enough to not alter the dynamics of the system
significantly for the problem considered in this work, a circular orbit
will be assumed for Dimorphos. Changes to the shape and mass of
Dimorphos are also expected due to the impact [25]. However, these
changes can only be measured once the Hera spacecraft arrives at the
system, and thus the shape and mass of Dimorphos used here are
based on the pre-impact measurements.
As the asteroids are assumed to be in a (close to) circular orbit

around the center ofmass of the system and themass of theCubeSat is
negligible compared to the masses of both asteroids, the circular
restricted three-body problem (CR3BP) is used to model the dynam-
ics. The equations of motion for this model are stated in a synodic
reference frame, which rotates together with the orbital period of the
system. This results in both bodies being stationary in this reference
frame, where the x axis is defined to be pointing in the direction of
Dimorphos, the z axis in the direction of the orbit normal, and the y
axis completing the right-handed frame. All variables are then made
dimensionless using the mass parameter μm � m2∕�m1 �m2�, the
body separation distanceR, and the time constant 1∕n (where n is the
mean motion of Dimorphos). This results in the following set of
equations describing the motion of the third body [28]:

�x − 2 _y � ∂U
∂x

;

�y� 2_x � ∂U
∂y

;

�z � ∂U
∂z

(1)

Table 1 Relevant physical parameters of the Didymos system, taken from [26,27]

Parameter Value and uncertainty

System mass 5.28��0.54� ⋅ 1011 kg
Mass ratio 0.0093 � 0.0013

Didymos ellipsoidal axes a � 399 � 7.5 m, b � 392 � 7.5 m, c � 380 � 7.5 m

Didymos rotational period 2.26 h � 0.0001 h

Dimorphos ellipsoidal axes a � 107 � 2 m, b � 79 � 4 m, c � 66 � 2 m

Dimorphos orbital period (pre-impact) 11.92148 � 0.000044 h

Dimorphos orbital period (postimpact) 11.372 � 0.0055 h

Body separation distance (pre-impact) 1.206 � 0.035 km

Body separation distance (post-impact) 1.144 � 0.07 km
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The potentialU includes both the rotational terms stemming from the
noninertial reference frame used and the gravitational forces acting
on the third body. For the close proximity motion that is mostly
relevant during the landing operations, the gravitational forces from
both asteroids dominate the dynamics compared to other forces like
the solar radiation pressure or the solar gravity [29]. Thus, only these
forces are considered. Tomodel the nonspherical gravitational effects
of the body, the spherical harmonics model is used, where the
potential is given as follows [30]:

Ug�r; δ; λ� �
μ

r

∞

l�0

l

m�0

R

r

l

Plm�sin δ��Clm cosmλ� Slm sinmλ�

(2)

where r is the radial distance from the center of the body, δ is
the latitude, λ is the longitude, μ is the gravitational coefficient
of the body, R is a normalized radius [which is taken as

3∕�1∕a2 � 1∕b2 � 1∕c2�], Plm are the associated Legendre func-
tions (their expressions can be found in [31]), andClm and Slm are the
Stokes coefficients, which represent the mass distribution of the
body. As both Didymos and Dimorphos are roughly shaped as an
ellipsoid, the Stokes coefficients can be determined analytically as
follows [32]:

C20 �
1

5R2
c2 −

1

2
�a2 � b2� (3)

C22 �
1

20R2
�a2 − b2� (4)

C40 �
15

7
�C2

20 � 2C2
22� (5)

C42 �
5

7
C20C22 (6)

C44 �
5

28
C2
22 (7)

wherea,b, and c are the three different axes describing the ellipsoidal
shape of the body (see Table 1). The specific values of the coefficients
for both bodies can be found in Table 2. One significant disadvantage
of the spherical harmonics model is that there is a possibility of the
model diverging for r < R [31]. However, in the case of a triaxial
ellipsoid, there is a certain condition that guarantees global conver-

gence, namely, that a < c 2
p

[32]. As this condition holds for the
shape of both Didymos and Dimorphos, the spherical harmonics
model can be used globally.

III. Uncertain Dynamics Analysis

The motion of the spacecraft during all phases of the landing is
severely affected by uncertainties. The maneuver from the opera-
tional orbit to the landing trajectory is affected by the uncertainty in
the state of the spacecraft stemming from the navigation system and
the error in the direction and magnitude of theΔV maneuver. During
the following ballistic flight, the imperfect dynamic modeling of the

system will cause the spacecraft to move away from the nominal
trajectory and behave differently than expected. Finally, at touch-
down the uncertainties in the surface properties and the presence of
rocks and boulders will cause the spacecraft to move across the
surface of the body in an unpredictable manner. It is therefore
necessary to consider all these uncertainty sources during the design
and execution of the landing maneuver.
This section discusses first a method to propagate the uncertainties

through the system and obtain a polynomial expansion of the uncer-
tain and dynamics. Afterward, a novel indicator based on this poly-
nomial expansion is discussed, which allows for the characterization
of the effect of uncertainties on the motion of the spacecraft.

A. Nonintrusive Chebyshev Interpolation

Consider an initial value problem defined as follows:

_x � f�x�t�; β; t�
x�t0� � x0

(8)

where t is the time, x is the state vector, and β is a vector containing the
dynamic model parameters. In this work, both the initial state x0 and
model parameters β are uncertain. Consider a set ofN realizations or
samples from the uncertainties: �x0;1; β1; :::; x0;N; βN �. Each sample

can be propagated through Eq. (8) until time tf, which results in a set
of trajectories xi�tf� � ϕi�x0;i; βi; tf�.
The set of all possible initial states, considering all the uncertainties

in the system, is given as follows:

Ωx0 � fx�t0; ξ�jξ ∈ Ωξg (9)

where the uncertainties are given by ξ � �x0; β�. The propagated set
representing all possible trajectories at time t from the realizations of
the uncertainty vector ξ within the uncertainty set Ωξ is given by

Ωt�ξ� � fx�t� � ϕ�ξ; t� j ξ ∈ Ωξg (10)

To understand the effect of the uncertainties on this system, an
analytical expression of this set needs to be obtained.
Recently, both intrusive and nonintrusive methods based on the

polynomial expansion of the uncertain variables have become more
popular for uncertainty propagation (see, e.g., [33,34]). These meth-
ods can have their accuracy and numerical efficiency tuned using the
amount of propagated samples and/or the polynomial order of the
fitted model. The nonintrusive methods are especially interesting as
they can treat the dynamics as a black box and can create an analytical
representation of the dynamics using significantly fewer samples
than is needed for traditionalMonteCarlo (MC)methods. Thismakes
them attractive for dynamics that have complex, nonlinear equations
of motion with uncertain and/or stochastic elements.
If xt is continuous in ξ and the set is compact, Ωt�ξ� can be

approximated using a polynomial function:

~Ωt�ξ� � Pn;d�ξ� �
N

i�0

ci�t�αi�ξ� (11)

where αi�ξ� are a set of multivariate polynomial basis functions, ci�t�
are the corresponding coefficients, and N � �n�d

d � is the number of

terms of the polynomial, where n is the degree of the polynomial and
d is the number of variables. Chebyshev polynomials are often used
for approximation purposes as they have several attractive numerical
properties [35]. These polynomials have been previously used in an
astrodynamics setting as well in [36,37]. This work follows a similar
approach as [34,36] and uses a Chebyshev polynomial basis together
with a Smolyak sparse grid sampling approach to obtain the poly-
nomial from Eq. (11), which is hereafter called the NCI method.
The Smolyak sparse grid was developed in [38] and selects a set of

points based on the extrema of Chebyshev polynomials. An impor-
tant aspect is that they do not suffer the curse of dimensionality, as the

Table 2 Gravitational harmonics coefficients
calculated from Eqs. (3–7)

Coefficient Didymos Dimorphos

C20 −0.016 −0.13
C22 0.0018 0.035

C40 5.5e−4 0.042

C42 −2.06e−5 −3.30e−3
C44 5.91e−7 2.22e−4
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number of points grow polynomially with the dimension of the

problem instead of exponentially. A more in-depth explanation of

this method for uncertainty propagation is given in [36].
Given the propagated samples, the coefficients of the polynomial

can be obtained by inverting the following system:

HC � Y (12)

where

H �
Ti1�ξ1� : : : Tis �ξ1�

..

. . .
. ..

.

Ti1�ξs� : : : Tis�ξs�
; C �

ci1
..
.

cis

; Y �
y1
..
.

ys

(13)

where s � N � �n�d
d �; ξ1; : : : ; ξs are the Smolyak sparse grid points;

and Y is the vector containing all the corresponding propagated

samples yi � ϕi�ξi; t�.
To show the effect of different sampling approaches on the accu-

racy of the coefficients obtained from inverting Eq. (12), an analysis

is done on a typical landing trajectory where there is a ballistic flight

phase and a landing and surface motion phase. The complexity in the

dynamics stemming from the moment of landing can be particularly

difficult on the approximation. The accuracy is measured by taking a

set of uniformly sampled points and comparing the samples at differ-

ent times along the trajectory between an MC approach and the

polynomial expansion of Eq. (11). Both the root-mean-squared error

(RMSE) and maximum error over all samples are calculated. The

RMSE is calculated as follows:

RMSE � 1

Ns

Ns

i�1

�x̂i − xi�2 (14)

where x̂i is the NCI-calculated state and xi is theMC state at the same

point in time. As a comparison against the Smolyak sparse grid, the

Latin hypercube sampling (LHS) method is used. The LHS method

divides the sampling space into several uniformly spaced subspaces

in which a random sample is taken for each individual subspace. The

resulting RMSE and maximum error along the trajectory are given in

Fig. 1. Both methods show relatively equal accuracy during the

ballistic phase. However, the sparse grid method handles the landing

much better compared to the LHS method, for which a large jump in

RMSE and max error happens.
Once a polynomial model of the states of the system, at a given

time, is available, one can use the polynomial expansion to extract

useful information on the evolution of the dynamics without the need

of expensiveMCsimulations. In the following,wewill showhowone

can derive a quantification of the rate of divergence of an ensemble of

trajectories, induced by multiple realizations of the uncertain quan-

tities, directly from the coefficients of the NCI model.

B. Pseudo-Diffusion Indicator

In the analysis of dynamic systems, dynamic indicators are often

used to identify different dynamic structures and other dynamic

phenomena like chaos, coherent structures, and/or diffusive behavior.

These indicators are often based on the sensitivity of initial conditions

to small perturbations, examining how these perturbations grow over

time. Examples of these indicators are the finite time Lyapunov

exponent [39] and the fast Lyapunov indicator [40]. In the case that

the dynamics contains uncertain parameters, the indicators would

need to be recalculated for each realization of the uncertainties, and a

statistical analysis would need to be performed over all the different

values of the indicator. This can be numerically inefficient as the

amount of initial conditions to be analyzed grows and the uncertain-

ties become larger. Therefore, recently there have been several devel-

opments of indicators that can be easily derived from polynomial

models like the NCI and capture the effect of uncertainty and sto-

chastic processes (see, e.g., [41–43]).
In thiswork,wewant to identify target landing conditions that lead to

a small divergenceof thepost-touchdown trajectories under the effect of

uncertainty on the contact dynamics. Therefore, the pseudo-diffusion

indicator developed in [24] is used to characterize the landing condi-

tions as it measures the rate of divergence of an ensemble of trajectories

induced by multiple realizations of the uncertainty set. In the case of a

(partial) landing, the touchdown conditions are uncertain, but it is

desirable that the post-touchdown trajectories are poorly affected by

such an uncertainty and thus have a low degree of divergence.
The pseudo-diffusion indicator is based on the fact that, for a

generic random-walk-like process in the univariate case, the mean-

squared displacement of an ensemble of trajectories grows according

to the following equation [44]:

σ2 � E �x�t� − �x�t��2 ≈ Kγt
γ (15)

whereKγ is the diffusion coefficient, γ is the diffusion exponent, and �x is
a reference position. Then, using the fact that the state is expandedusing

the polynomial of Eq. (11) and using the orthogonality of the Cheby-

shev polynomials used as the basis for the polynomial expansion, it can

be shown that the variance of the state can be calculated as follows:

σ2�t�≍E � ~x�t� − ~x�t��2

�
Ωξ i;∣i∣≠0

ci�t�Ti�ξ� ⋅
i;∣i∣≠0

ci�t�Ti�ξ� ρ�ξ�dξ

�
i;∣i∣≠0

κi c
2
i �t� (16)

where κ �∣ i ∣ ! 2π
p

. Therefore,

i;∣i∣≠0
κi c

2
i �t� � Kγt

γ (17)

Assuming large t, γ can be approximately found using the following
expression:

γ ≈ ~γo �
log i;∣i∣≠0κi c

2
i �t� � 1

log t
(18)

where ~γo is called the pseudo-diffusion exponent.
In this work, a slightly altered version of the pseudo-diffusion

indicator is used with respect to the definition given in Eq. (18). The

expression for the mean-squared displacement is altered to measure

the displacement with respect to the desired touchdown location xtd
as follows:

Fig. 1 LHS sampling accuracy compared against the Smolyak sparse
grid accuracy.
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E��x�t� − xtd�2� � E�x�t�2� − 2xtdE�x�t�� � x2td (19)

≈
i;∣i∣≠0

κi c
2
i �t� � �c0 − xtd�2 (20)

In the multivariate case, this can be shown to be equal to

E�jx�t� − xtdj2� ≈
i;∣i∣≠0

κi jci�t�j2 � �c0 − xtd�2 (21)

This results in the following definition for the pseudo-diffusion
indicator, which is now used throughout the paper:

~γ �
log i;∣i∣≠0κi jci�t�j2 � �c0 − xtd�2 � 1

log t
(22)

It is worth highlighting a few properties of the indicator in Eq. (22):
1) As other dynamic indicators, ~γ captures in a single scalar the

evolution of a vector field and thus can be used to build a cartography
(or a qualitative map) of the dynamic evolution of the system for
different initial conditions.
2) The indicator is directly computed from the NCI model without

any added computational cost.
3) The indicator contains information on the mean and variance of

the ensemble. If the mean and variance are bounded, the indicator
goes asymptotically to zero, in which case the dynamics is asymp-
totically insensitive to the uncertainty.

IV. Surface Motion

Themotion of the spacecraft during touchdown and the phase after
landing where it can bounce and move around the surface is mainly
defined by the shape of the surface, the characteristics of the surface
material to dissipate the energy of the spacecraft, and the presence of
surface features like rocks and/or craters. Various previous works
have looked into the problem of dynamically modeling the motion
across the surface of an asteroid. For the Hayabusa mission, an initial
analysis for the deployment of a target marker on the surface of
Itokawa was performed in [15]. For this initial analysis, a point mass
model of the lander with an energy damping factor in the normal
velocity, called the coefficient of restitution (CoR), was used. A
minimum height from the asteroid surface was chosen for which
the simulation would stop if it was not reached after the last bounce,
fixing the settling location. This model was expanded upon in [45],
where a spherical mass was considered, introducing a friction and
rolling resistance parameter. In [16], a parametric sensitivity study
was performed for this model, showing that the CoR is much more
important than the absolute value of the friction and rolling resistance
with regards to the settling time and location of the lander. Other
important parameters found for successful landing are the deploy-
ment velocity magnitude and direction, and the mass distribution of
the lander. Similar conclusions were drawn in the tracking of the
deployment of spherical markers for the Hayabusa 2 mission in [46].
A more complex nonspherical shape bouncing model was then
developed in [17], using the Stronge method. This method uses an
energetic version of the CoR, together with separating different types
of behavior during contact like slip and stick. This model was
investigated both numerically [47] and experimentally [48], showing
that the friction is more important in this case but the deployment
conditions and CoR still dominated the outcome of the landing,
further verified for Hayabusa 2 rover deployment studies [49]. All
of the previously mentioned studies consider the so-called hard sur-
facemodel, which assumes that the local surface at impact is always a
single largemonolithic structure larger than the lander. If, on the other
hand, a soft-surfacemodel is necessarywhere the surface consists of a
large set of small particles, i.e., regolith, discrete element methods
(DEMs) are needed to determine the response of the lander’s motion
to the surface. In [50], this analysis was performed for the Phobos
surface, and it was found that using a DEMmodel a relation between
impact geometry and the hard-surface parameters like CoR and

friction can be found such that the hard-surface model can still be

used for larger scale simulations if these properties become a function

of impact angle and velocity, removing the computational burden of

DEM simulations.
In this work, the main goal is to present a novel method for

analyzing the motion across the surface of an asteroid and design a

robust trajectory that has a high probability of settling on the surface

of the asteroid under large uncertainties. This is especially relevant

for an initial analysis of the landing maneuver, where surface proper-

ties like the local slope, rock sizes and distribution, and surface

composition will only be known with a high degree of uncertainty.

But even after rendezvous with the target body and in-depth remote

investigations, the surface mechanical properties will still be highly

uncertain. Thus, presenting and validating the ability of the NCI and

pseudo-diffusion indicator-based method to incorporate uncertain-

ties is the main focus of this work, for which a low- to medium-

fidelity surfacemotionmodel is favorable as it allows to better present

the general capabilities of this method without introducing complex

dynamic behavior from the contactmodel and requiring case-specific

information. It is noted that the sparse sampling method of the NCI

allows for increasing the amount of uncertain parameters without

significantly increasing the computational time. Therefore, higher-

fidelitymodelswith a larger parameter space do not have any inherent

properties that limit their use within the framework presented here.

A. Surface Impact

The spacecraft is assumed here to be a point mass, while Dimor-

phos is modeled as a triaxial ellipsoid. Therefore, Dimorphos can be

parameterized using the previously defined ellipsoidal axes of Table 1

as follows:

E�x; y; z� � x2

a2
� y2

b2
� z2

c2
� 1 (23)

where the x, y, and z coordinates are with respect to the ellipsoid

center. This significantly simplifies the condition of when an impact

occurs to

E�x; y; z� ≤ 1 (24)

and the normal at any point along the surface can be found through the

gradient operator:

n̂�x; y; z� � ∇E�x; y; z� � 2 x∕a2; y∕b2; z∕c2 T (25)

The surface of a small body can often be modeled as either a hard-

rock-type surface or a soft-regolith-type surface [50]. During its

multiple impacts, Philae encountered both of these types of surfaces

[51], showing the importance of both of these types ofmodels. For the

soft surface case, a numerically expensive DEM is usually used,

which also requires a good knowledge of the surface conditions

and parameters. Hence, it is less useful for this type of analysis.
The energy dissipation during an impact is characterized using the

CoR 0 ≤ ϵ ≤ 1, which is defined here as follows:

ϵ � v�N
v−N

(26)

where the plus and minus signs indicate the post- and pre-impact

velocity, respectively, and the N subscript represents the normal

component of the vector. Using the geometry of the impact shown

in Fig. 2a, the postimpact velocity vector can be calculated as follows:

v� � v�T � v�N (27)

v�N � −ϵ�n̂ ⋅ v−�n̂ (28)

v�T � v− − �n̂ ⋅ v−�n̂ (29)
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Thus, given an impact point and impact velocity, the postimpact
velocity can be calculated and used to initialize the following arc of
ballistic flight that is propagated using the dynamics described in
Sec. II. As the analysis here is mainly concerned with finding the
conditions for settling on the surface and less with the exact settling
location, only the CoR is considered to simplify the analysis, and no
tangential friction is implemented. This can result in the tangential
velocity remaining high whereas the normal velocity goes toward
zero, keeping the kinetic energy always above zero. To solve this, a
procedure similar to [45] is followed, where if the normal velocity is
below aminimum value, the bouncing is determined to have stopped.
After tuning for minimal difference between settling locations for
different values, the minimum normal velocity was chosen to be
0.5 cm/s.
For the design of landing trajectories, it is important to studywhich

landing conditions lead to the highest probability of a successful
landing, which is defined as having the spacecraft remain on the
surface of Dimorphos. In this case, the important uncertain dynamic
parameters that govern this probability are ϵ and the uncertainties in
the gravitational field given here by the spherical harmonic coeffi-
cients. To find the range of landing conditions that give a high
probability of success, a large number of landing velocities jvlandj
and landing angles θland (defined as the angle between the local
normal and the incoming velocity vector; see Fig. 2a) are taken and
used to calculate the initial postimpact velocity vector. From there,
based on the sampling method discussed in Sec. III.A, a set of
samples is propagated. Each time if one sample is determined to
impact with Dimorphos, the postimpact vector is calculated again.
Once enough time has passed (defined here to be 12 h), the pseudo-
diffusion indicator is calculated. From various previous studies,
the range of possible values for ϵ is taken to be [0.55, 0.85] (see,
e.g., [52–56]). Furthermore, to also include uncertainties during
ballistic flight, the C20 and C22 (thus impacting the fourth-degree
coefficients aswell) are taken to be in the range of their nominal value
with 10% uncertainty, which is close to the uncertainties given for
most parameters in the Didymos reference model [26]. For all results
discussed in the rest of the paper, these uncertainties are kept con-
stant.Onlywhen the rockmodel is discussed in Sec. IV.Bwill another
uncertainty be added, with the CoR and spherical harmonic coeffi-
cient remaining the same. For the CoR and spherical harmonic
uncertainties, the results of ~γ are shown in the map in Fig. 3.
As is explained in Sec. III.B, low ~γ indicates regions of low

diffusion, i.e., where trajectories that have slightly different initial
conditions or dynamic parameters still behave similarly and stay
close to each other. In the case of a spacecraft landing scenario, the
lowest diffusion happens when all realizations of the uncertainties
result in the spacecraft remaining on the surface ofDimorphos.When
part or all of the realizations result in the spacecraft bouncing away
from the surface into prolonged ballistic flight, the diffusion increases
as during the ballistic flight the trajectories move away from each
other due to the nonlinear dynamics. Therefore, the regions of low ~γ
correspond to landing conditions that allow the spacecraft landing on
Dimorphos with a high likelihood, which is defined here as a suc-
cessful landing condition. It can be seen that this happens for most
conditions with the jvlandj < 10 cm∕s and θland < 20 deg. The calcu-
lated escape velocity of Dimorphos, which is around 0.09 cm/s [57],
is close to the limiting velocity here, considering also energy damp-
ing due to the first bounce. As the landing velocity decreases until
around 6 cm/s, successful landings become more likely for higher

θland. After that, the direction of impact does not have any significant
impact on the ~γ value. This corresponds to the closing of the zero
velocity curves around the L1 and L2 points [13], thus not allowing
for transportation outside the region of Dimorphos regardless of the
impact angle. For most of the landing velocities above 10 cm/s, ~γ is
much higher, and thus there is a low likelihood of having a successful
landing. The transition region between these two limits (i.e., the
region between 5 and 10 cm/s for larger impact angles) shows many
interesting structures, which result in part of the trajectories landing
on Dimorphos and part of them going into bounded motion around
both the primary and secondary.
Figure 4a shows the probability of a successful landing, generated

by sampling the NCI model 500 times and measuring the number of
points that remain on the surface of Dimorphos. When comparing to
the ~γ of Fig. 3, it can be seen that a high landing probability
corresponds to a low value of ~γ. One region, around 8–9 cm/s of
landing velocity and 0 deg impact angle, has a low landing proba-
bility, which is not immediately clear in the ~γ map of Fig. 4a. How-
ever, this can also be shown to exist when the map is focused to lower
~γ values by taking all ~γ > 1.5 and fixing them to a value of 1.5, as is
done in Fig. 4b. More details can now be seen in certain regions,
showing a similar structure as seen for the probability map around
8–9 cm/s. Thus, this verifies the function of the ~γ indicator in finding
initial conditions that remain close to the touchdown location.
To show the relationship between the value of ~γ and the evolution

of an ensemble of trajectories at a given time after touchdown, 500
realizations of the uncertain parameters were propagated (using the
true dynamicmodel, not theNCI polynomialmodel) forward for 12 h
from four touchdown conditions from the regions designatedwith the
letters A, B, C, and D in Fig. 3. The resulting trajectories, plotted in
the synodic reference frame in all three dimensions, are illustrated in
Fig. 5. The final positions of all the sample trajectories can also be
seen in Fig. 6. The two cases in the transition region, A and B, have
part of the trajectories that landed on Dimorphos and part remaining
in a bounded region around the asteroid system. For case C,with high
~γ, it can be clearly seen that all samples escape from the surface of
Dimorphos and move away from both bodies. Whereas for D, with
low ~γ, all trajectories remain on the surface of Dimorphos, some
bouncing several times before going stationary. From the landing
probability and clamped ~γ map in Fig. 4, three other regions of
interest, denoted by E, F, and G, are investigated using the same
setup, which can be seen in Figs. 5e–5g and 7. Case E has a relatively
higher ~γ than the surrounding area. As can be seen in Fig. 5e, this is
due to the fact that there are trajectories landing on Dimorphos,
trajectories going into far circumbinary orbits, and also trajectories

Fig. 3 The ~γ map of the NCI model at DART crater location.

Fig. 2 Two-dimensional representation of the geometry during landing.
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Fig. 4 Map for the probability of landing calculated from the NCI model and ~γ map with only lower values shown.

Fig. 5 Sets of trajectories plotted from the example MC analyses.

FODDE ETAL. 2047

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

St
ra

th
cl

yd
e 

on
 J

an
ua

ry
 3

1,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

77
86

 



landing on Didymos. Case F is located in a region with a high impact

angle but low ~γ compared to the surrounding values. In Fig. 5f, some
of the trajectories can be seen to bounce directly from Dimorphos to

Didymos, and impact onDidymos. Compare this to case B in Fig. 5b,

which has a similar velocity but lower impact angle, and it can be seen
that part of the trajectories of B go into larger orbits around the

primary instead of impacting on its surface. Thus the general ~γ value
of F is relatively low, while the Dimorphos landing probability also
remains low. Case G is also of interest, as even though the landing

probability is relatively high, the ~γ value is also high. As mentioned

before, the calculated escape velocity of Dimorphos is roughly
0.09 cm/s, which is close to the velocity of region G. Thus, it can

be seen that if a large amount of sample from the CoR and SH

coefficients uncertainty distribution is taken around this velocity,

several different dynamic effects can be observed. A relatively large

amount of trajectories will remain on the surface, whereas there will

also be a significant amount of trajectories bouncing and escaping the

system with just enough energy, as can be seen in Fig. 5g.

B. Surface Rocks

In the previous section, the only parameter that influences the

postimpact bounce velocity is the CoR ϵ, where the normal vector

is calculated assuming a smooth ellipsoid as the shape of Dimorphos.

This does not necessarily correspond to the real global shape of

Dimorphos, or most small bodies in the solar system in general.

For a significant amount of the small bodies that have their surfaces

imaged, several different types of surfaces were present across the

body [47]. At bodies like Eros [58], Itokawa [52], and 67p [51], both

smooth and rocky regionswere found. Therefore, besides the smooth

surface model, the influence of rocks and boulders needs to be

implemented to ensure proper modeling of the surface motion of

the lander.

A stochastic model for the effects of rocks was introduced in [45],

in which a probability was associated with the chance of colliding

with a rock, and then another probability was associated with how

much the local normal vector is changed due to the presence of a rock

on the surface. These probabilities were estimated using a large

number of simulations with persistent rocks placed on the surface.

In [16], it was argued that a stochastic rock model would bias the

lander toward low-slope regions as it cannot get stuck on boulders

located in high-slope regions, and, furthermore, grazing impacts with

rocks would not be registered. Other studies like [18,19] used per-

sistent rock models as well to increase the fidelity of the model.

In thiswork, themain focus is on the effect of the uncertain landing

conditions, including uncertainty in the local surface features, on the

motion of the spacecraft. Therefore, the use of accurate shapemodels

is not as beneficial, and models that more easily incorporate the

uncertain nature of the problem are preferred. Therefore, the rocks

Fig. 6 Distribution of the final locations of the MC analyses.

Fig. 7 Distributionof the final locationsof theMCanalyses fromFigs. 4a
and 4b.
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are modeled here as a stochastic perturbation on the normal vector n̂,
used in Eqs. (28) and (29). Themodel considered here is thus not only
uncertain in terms of the parameters of the dynamic model but now
also stochastic due to the “noisy” normal vector.
In contrast to the stochastic model described in [45], the model

used here considers that at every contact with the surface, the normal
vector is altered according to the rock model. Physically, this means
that there is no smooth area on the asteroid surface. As mentioned
before, most small-body surfaces are a combination of smooth and
rocky regions, which requires adding a second random variable that
models the chance of impacting a rock, adding complexity to the
model. Even though this would be necessary for some asteroid
surfaces, the simpler model considered here investigates two extreme
cases,which thus shows that themethodology developed in this paper
would work as well for a model considering a mixed smooth and
rocky surface. Another difference from the previously defined sto-
chastic rockmodel is that in this work the distribution of the normal is
based upon the investigation of rock shapes encountered in previous
asteroids missions. For example, it was found that when the boulders
from images of the Hayabusa 2 spacecraft are fitted to ellipsoidal
shapes, the mean values of b∕a and c∕awere found to be around 0.7
and 0.44, respectively [59]. This can then be converted to a distribu-
tion of normal angles θn̂p

and azimuth angles ϕn̂p
of the perturbed

normal vector n̂p w.r.t. n̂, where the different variables are explained
graphically in Fig. 2b (ϕn̂p

is defined as the rotation around the n̂ and

thus not shown in the 2D figure). For example, the found distribution
for θn̂p

is shown in Fig. 8a. This distribution is then fitted to a beta

probability distribution function and implemented in the dynamic
model. To determine the influence of different shapes, a more flat-
shaped rock (b∕a � 0.9 and c∕a � 0.2) was implemented aswell, as
shown in Fig. 8b. These two different rock shapes are hereby referred
to rock shapes A and B, respectively. If increased fidelity is needed,
the same procedure can be used to combine various different rock
shapes to create a single distribution of normal angles. However, for a
first analysis, here a single rock shape is used for each simulation.
The ~γ map of the new dynamic system with the distribution taken

from both rock shape set A (left) and rock shape set B (right) can be
found in Fig. 9. First, it can be seen that the difference between the two
rock distributions is minimal, thus showing that the shape of the rocks
has less of an effect on the large-scale distribution of the final states. If
comparedwith the results without rocks, themain difference is that the
impact angle has less impact on the results than that of the landing
velocity. It can be seen that now the main driver is that the landing
velocity should be below around 6 cm/s to ensure a high probability of
landing. The impact angle should still be low, as there still is a slight
slope on the boundary between the low and higher diffusion areas, but
this slope is much less significant compared to Fig. 3.
Three different example MC analyses are performed in a similar

manner to before to analyze these different regions, where each one is
taken with a similar impact angle but landing velocity taken from the

Fig. 8 Distribution of θnp
for different rock shapes.

Fig. 9 The ~γ maps for different rock distributions at DART crater location.
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different regions discussed before. The results can be seen in Figs. 10

and 11. As expected, C shows that most of the trajectories remain

bounded on the surface of Dimorphos. The difference betweenA and

B is less prominent in terms of ~γ values, as for these regions the

diffusion from the desired touchdown regions is in general quite

large. However, if the original definition of the diffusion indicator

~γo from Eq. (18) is applied instead of the diffusion indicator based on

the touchdown location, ~γ, different regions can be observed, which
are shown in Fig. 12. For velocities between 8 and 10 cm/s, the

diffusion is high as a significant amount of trajectories move

from Dimorphos to Didymos, settling on the surface of Didymos.

Furthermore, there are also several trajectoriesmoving outward of the

Fig. 10 Trajectories plotted from the example MC analyses, including the stochastic rock model.

Fig. 11 Distribution of final locations of the MC analyses, including the stochastic rock model.
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system, which causes a generally high diffusion as trajectories stem-
ming from these initial conditions can go into three different regions:
settling on Dimorphos, settling on Didymos, and escaping the sys-
tem. For initial conditions with a velocity higher than 10 cm/s, less
transport to the surface of Didymos is occurring, and more are
escaping the system, causing the general diffusion to be less high
than for region B, even though more trajectories escape the system.
This is important when considering, for example, the transport of
natural ejecta from the DART impact re-impacting the surface.
However, when considering a spacecraft landing trajectory, the novel
definition for ~γ of Eq. (22) is preferable as it only takes into account
the diffusion from the desired touchdown location.

V. Minimum Touchdown Velocity

During the proximity operations at Didymos, the spacecraft will
move slowly toward the bodies over time. During the final phase,
when it is the closest to the system, the maneuver to put it on the
landing trajectory towardDimorphoswill be executed.Asmentioned
before, for this study it is assumed that the translational state is not
continuously controlled during descent. Hence, the minimum pos-
sible landing velocity cannot be controlled and is determined by the
natural dynamics of the system.
This minimum landing velocity for Dimorphos is determined as

follows: For the nominal case, the authors of Ref. [60] developed a
bisection method to determine the minimum touchdown velocity for
ballistic landings on asteroid surfaces. Thiswas then further extended
in [14] to use uncertainty propagation methods to include state and
dynamic uncertainties in the process. This method is used here to
determine the touchdown velocity, considering the current, pre-
arrival uncertainties in the total mass of the system and the mass
distribution of Dimorphos. For the sake of completeness, thismethod
is explained here as well.
The method starts by selecting a landing location and initializing

an upper and lower bound for the landing velocity, vl and vu,
respectively. For each iteration of the algorithm, the landing velocity
vc is taken to be the middle point of these bounds, i.e., vc �
�vu � vl�∕2. As was shown in Sec. IV, the highest probability of
the spacecraft remaining on the surface of Dimorphos after bouncing
is when the landing happens perpendicular to the surface. Therefore,
the impact angle is taken to be 0 deg, and the landing state can be seen
as a point located at the desired landing location with the velocity
vector pointing toward the center of Dimorphos. The trajectory is
then propagated backward in time until either the spacecraft reaches a

predetermined deployment distance rdep (which can be either the

distance at which a mothercraft is orbiting at deployment or the

previous operational orbit of the spacecraft before starting the landing

maneuver), the spacecraft lands back onDimorphos, or the flight time

of 12 h is reached. If rdep is reached, the landing velocitymight be too

large, and thus the upper bound of the next iteration is lowered to the

vc of the current iteration. For the other possibilities (flight time larger

than 12 h or re-impact on the surface), vc is too low, and thus the lower
bound of the landing velocity for the next iteration is set to vc of the
current iteration. A maximum flight time of 12 h is selected for

operational purposes and to minimize the maximal growth of the

set of states. This process is repeated until the difference between vl
and vu reaches a set tolerance, taken here to be 1 ⋅ 10−8.
In the case that uncertainties are also considered, the process

remains relatively similar except for the fact that the state is now an

uncertain set, which needs to be propagated using the NCI method

discussed in Sec. III.A. Furthermore, determining how to adjust the

velocity bounds is now done according to the value of the minimum

distance between the set of lander states andDimorphos. Themethod

is shown graphically in Fig. 13, where case A shows the scenario

where the full set of lander states reaches the deployment distance and

in case B, the landing velocity is not high enough to reach the

deployment distance. Additionally, a summary of the method is

shown in Algorithm 1.

Figure 14 shows the results for Dimorphos, with rdep � 2.0 km
(the final orbital distance of Juventas) and the uncertainties at 10% of

their nominal values. The surface of Dimorphos can be divided into

two different regions, the side facing away fromDidymos (longitude

between −90 and 90 deg) and the side facing toward Didymos

(longitude between −90 and −180 deg and between 90 and

Fig. 12 Map for rock set A at DART crater location, using the ~γo
definition in Eq. (18).

Fig. 13 Definition of the variables and two different cases for the
bisection method.

Algorithm 1: Minimum touchdown
velocity algorithm

Set vlb, vub
Set μp � σμp , μs � σμs
Set C20;s � σC20;s

, C22;s � σC22;s

while jvub − vlbj < TOL do

vl � �vub � vlb�∕2
Propagate ~Ωxf →

~Ωx0

if rlb < rsurf then

vlb � vl
else if rlb > rdep then

vub � vl
else

vlb � vl
end if

end while
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180 deg). The latter region shows in general high landing velocities as
it needs to travel further to reach the deployment distance and to avoid
Didymos. Only at high latitudes can lower touchdown velocities be
reached, as Didymos can be avoided more easily from these landing
locations. In general, the landing velocities in this region are too high
to be feasible for a ballistic landing strategy. For the region facing
away fromDidymos, the lowest touchdownvelocities are near the (0,
0) deg latitude and longitude point, where velocities around 5 cm/s
can be found. Moving toward the desired landing location at the
DART crater [i.e., (0, 90) deg latitude and longitude], the velocity
increases again, reaching around 38 cm/s. As determined in Sec. IV,
this landing velocity does not guarantee that the spacecraft remains
on the surface of Dimorphos after touchdown (for both the cases of
rocks and no rocks). Therefore, either the assumption of landing
perpendicular to the surface needs to be relaxed or a braking maneu-
ver needs to be added to the landing trajectory to reduce the speed of
the spacecraft before touchdown.
Figure 15 shows the influence of the incoming velocity direction

on the minimum landing velocity. The angle θvland corresponds to the
impact angle discussed in Sec. IV, and the azimuth is the angle of the
landing velocity vector with respect to the negative x axis of the
synodic frame. As can be seen from Fig. 15, there are options for
lower velocity landings (for settling requiring between 7 and 10 cm/s)
with a very shallow impact angle around 180 deg azimuth, corre-
sponding to the velocity vector pointing away from the barycenter of
the system. However, even for the lower velocities found there, the
very shallow impact anglewill significantly increase the likelihood of
the spacecraft bouncing away from the surface again, aswas shown in
Sec. IV. Therefore, if the goal is to land in or near the DART impact
crater, a braking maneuver closer to the surface is the only option to
have a high probability of a successful landing.

VI. Robust Trajectory Optimization

After finding the target conditions of the lander at the surface in

Sec. IV, the goal now is to design a trajectory that can ensure that the

spacecraft can reach these conditions reliably. As mentioned in

Sec. V, the minimum touchdown velocity at the DART crater for a

direct deployment from rdep � 2.0 km is around 38 cm∕s, whereas
from the ~γ maps of Sec. IV it was found that the touchdown velocity

should be below 10 cm∕s, preferably below 7 cm∕s if a rocky

environment is found, to ensure a high probability of settling on

the surface of Dimorphos. Therefore, a braking maneuver is needed

between the deployment maneuver and the time of landing.

For the ballistic landing considered here, there is no dedicated

navigation system that is capable of estimating the state and cor-

recting for off-nominal conditions; hence, the braking maneuver is

performed open-loop using a precalculated ΔV maneuver. As the

spacecraft has no capabilities to correct for the uncertainties in the

state of the spacecraft stemming from maneuver errors and dynamic

model uncertainties, both the deployment and braking maneuvers

need to be generated such that the landing success percentage is

the highest. Normally, this is done by first designing a nominal

trajectory, then doing a sensitivity analysis (often using an MC

method) to assess the impact of uncertainties, and finally altering

the nominal trajectory based on the found sensitivities. This process

often needs multiple iterations and is thus time-consuming and

can result in worse trajectories with added safety margins [22]. In

this section, the NCI uncertainty propagation technique is used to

generate landing trajectories that directly take into account all the

different uncertainties and minimize its sensitivity to them.

The approach taken here is based on the direct multiple shooting

method developed in [61]. The landing trajectory is divided into two

Fig. 14 Minimum landing velocities for different areas, plotted with a power law distribution.

Fig. 15 Minimum landing velocity for different landing vector orientations at the DART crater.
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segments: the deployment segment spanning from the deployment
point to the braking point, and the terminal segment stemming from
the braking point to the landing point. A nonlinear programming
(NLP) solver is then used to find the optimal values of the decision
variables u, which consist of the deployment velocity vector vdep,
the braking maneuverΔv, and the time of the braking maneuver tΔv.
The trajectory is then propagated using the selected u after which the
different objectives and constraints are evaluated and used to select a
newu.When considering uncertainties, this pointwise propagation of
the state is substituted by the propagation of the uncertainty set,
which is performed here using the NCI method. In principle, the full
trajectory can be propagated in one go, obtaining one polynomial
representation of the landing trajectory under uncertainty. However,
both the required polynomial degree and number of samples increase
quickly as the number of uncertainvariables increases. Therefore, it is
more efficient to separate the polynomial for the two different seg-
ments. The continuity between the two segments is guaranteed using
a re-initialization approach, which is shown graphically in Fig. 16.
First, the uncertainty set at the deployment point is propagated using
NCI to the braking point, shown as the gray areas in the left side of
Fig. 16. The initial uncertainty range for the terminal segment needs
to be represented by an upper and lower bound of the various state
variables, i.e., a hypercube in phase space. This means that the shape
of the final set of states at the braking point, which is often shaped
very differently from a hypercube, cannot be used directly as an input
for the initial state uncertainties of the terminal phase. Hence, the
uncertainty set at the braking point is re-initialized as a hypercube that
conservatively bounds the set (the dashed box). This hypercube can
be used as the input for the following phase and is then propagated
through the terminal segment until the time of landing. As the
resulting hypercube is an overestimation of the actual uncertainty
set, a set of samples is first propagated using the deployment segment
polynomial and then used as an input for the terminal segment
polynomial to obtain the actual distribution at the landing point
(see Fig. 16). This distribution is then used to obtain the necessary
objective and constraint values that are formulated as part of the NLP,
which are now functions of the distribution of landing trajectories.
The robust optimization problem considered here is formulated as

follows:

min
u

max�diag�Σr;land�� (30)

s:t: xk�1 � ~Ωtk�1
�ξk�; k � 0; 1 (31)

E�rland� − rcrater < 100 m (32)

E�jvlandj� < 8 cm∕s (33)

The maximum variance of the state at the final time is selected as
the cost function that needs to beminimized. Using this objectivewill

desensitize the landing trajectory to the uncertainties and thus reduce
the landing footprint. To ensure that the spacecraft will landmostly in
the DART crater hemisphere, constraint (32) is added to ensure that
the mean landing state should be within 100 m of the DART crater
location. Constraint (33) is derived from the ~γ maps, where landings
below this value have sufficiently low ~γ such that the probability of
settling on the surface is high. For the rocky case, the θland constraint
can be relaxed, whereas the jvlandj constraint needs to be lowered to
7 cm∕s. However, it will be shown that the result with the constraints
set for the smooth surface case alsoworkswell for the rocky case, and
thus this setup is kept for now.
Initially, a pointwise propagated trajectory is found using a simple

single shooting approach, where the trajectory is propagated back-
ward from the estimated DART crater location to the final time,
minimizing the difference between the actual final position and the
desired deployment location (assumed here to be located on the x axis
of the synodic frame at 2.0 km away from the barycenter). This
trajectory is then used as both a comparison against the robustmethod
discussed here and as an initial guess for the NLP solver. The
uncertainties considered here are 100 m (3 − σ) in the deployment
position, 5% (3 − σ) in the velocitymagnitude of the deployment and
braking maneuver, and 3 deg (3 − σ) in the pointing of the deploy-
ment and braking maneuver. The specific solver used here is the
WORHP algorithm [62].
The results of an MC analysis of both the pointwise and robust

approach are summarized in Table 3. The main result is the large
increase in trajectories landing on Dimorphos, going from 74.3 to
99.8%. This is done by significantly reducing the magnitude of the
maneuvers and at the same time changing the pointing slightly while
keeping the braking time almost the same as for the pointwise result.
This results in a smaller uncertainty set due to the proportionality of
theΔv error and thus results in a significantly smaller landing ellipse,
as can be seen in Fig. 17, and in significantly reducing the landing

Fig. 16 Diagram explaining the robust landing trajectory optimization method.

Table 3 Results of the optimization of the landing trajectory

Variable Point Robust

vdep 40.9 cm/s 20.8 cm/s

ϕdep 186.3° 223.0°

θdep 93.7° 88.6°

Δv 39.9 cm/s 7.2 cm/s

ϕΔv 185.3° 165.18°

θΔv 84.7° 87.1°

tΔv 7.071 h 7.703 h

Landing success 74.3 % 99.8 %
Landing latitude (mean, 1 − σ) 2.49 � 26.5° 18.72 � 13.5°

Landing longitude (mean, 1 − σ) 77.9 � 41.5° 5.9 � 22.8°

θland (mean, 1 − σ) 35.9 � 19.4° 37.9 � 15.1°

vland (mean, 1 − σ) 8.68 � 0.46 cm∕s 5.0 � 0.66 cm∕s
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velocities, as shown in Fig. 17b. However, this does come at the cost

of moving the mean landing location more away from the estimated

crater location and also increasing the mean impact angle (see

Table 3).

To determine how these results relate to the desired landing

conditions found in Sec. IV, the MC results are projected on the ~γ
maps in Fig. 18. It can be seen that for both cases the trajectories of

the robust solution are located in lower ~γ regions compared to the

pointwise solution. For the smooth case in Fig. 18a, the highermean

impact angle does not result in trajectories bouncing off the surface

again, as the mean impact angle is sufficiently low to allow for all

trajectories to settle on the surface. Similarly for the rocky case, the

low sensitivity to this angle and the fact that the mean touchdown

velocity is much lower in comparison to the nominal case result in

the majority of the MC samples for the robust solution residing in

low ~γ regions, which directly relates to a high probability of a

successful landing.

VII. Conclusions

This work introduces a novel methodology for the design and
analysis of ballistic landing trajectories on the secondary of a binary
asteroid. The methodology shows how efficient uncertainty propa-
gation and quantification tools, specifically NCI and the pseudo-
diffusion indicator, can be used to analyze the uncertain dynamics
and design a robust landing trajectory.
It was shown how the pseudo-diffusion indicator can be used to

determine constraints on the landing geometry and touchdownveloc-
ity that ensure high probability of the spacecraft settling on the
surface of the asteroid. For the model where a smooth surface of
the asteroidwas assumed, amaximum touchdownvelocity of 10 cm/s
was found and amaximum impact angle of 20 deg.As the touchdown
velocity decreases, the maximum allowable impact angle also
increases, where for around 6 cm/s almost all impact angles result
in settling on the surface. A transition region also appears for touch-
down velocities between 10 and 6 cm/s and high impact angles,

Fig. 17 The distributions of landing location and geometry of both the robust optimization method and the nominal pointwise method.

Fig. 18 Samples of both trajectory design methodologies projected in the ~γ maps.
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where part of the trajectories settle on Dimorphos’s surface and part
go into an orbit around the system. When the dynamics are altered to
model surface features like rocks and craters using a stochastic
perturbation on the local surface normal, the dependency on the
impact angle is less significant and themaximum touchdownvelocity
decreases to around 8 cm/s.
Using an NCI-based bisection method, it was then found that if a

landing location in the DART crater hemisphere is considered with a
deployment point 2 km away from the system, the necessary mini-
mum touchdown velocity would be much higher than what is
required for settling on the surface. Thus, an extra braking maneuver
is needed along the trajectory to reduce the touchdown velocity.
The deploymentΔv, brakingΔv, and time of the brakingΔvwere

then determined using a novel method that incorporates the NCI
uncertainty propagationmethod into the trajectory optimization tran-
scription. This method was able to find a trajectory that increases
the landing success percentage from 74.3 to 94.7% compared to a
trajectory designed without considering the uncertainties. Further-
more, the landing footprint on Dimorphos was also significantly
reduced, together with lowering the mean touchdown velocity. This
comes at the cost of increasing themean impact angle andmoving the
mean landing longitude away from the desired location. However,
even with these changes, the robust trajectory was found to be much
more desirable.
These results show the potential of thismethodology for the design

of a ballistic landing on Dimorphos. The increased knowledge about
the uncertain and stochastic dynamics gained through the NCI and
pseudo-diffusion indicator techniques increases the robustness and
performance of these types ofmissions, and thus it is important to use
them in the mission design process.
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