On the logic of remote detection of marine plastics

Chuanmin Hu, University of South Florida, <u>huc@usf.edu</u> NASA Project: 80NSSC21K0422

Project team members and collaborators: Brian Barnes, Tanya Harrison, David English, Lin Qi, Menghua Wang, Heidi Dierssen, Shungu Garaba.....

Outline

- I. What are we talking about?
- II. What's the logic?
- III. What's possible?

I. What are we talking about?

Subject => Marine plastics (a sub-category of marine debris or marine litter):

Marine litter: Solid materials released to the marine environment from natural disasters (e.g., hurricanes, Tsunami) or human activities: Microplastic particles, plastic bags, plastic bottles, fishing gear, tree branches/leaves, driftwood,

Microplastic particles

Microfibers (> 91%), mostly < 1 mm

0.5 mm

Barrrows et al. (2018)

Larger particles (< 5 mm)

Garaba & Dierssen (2018)

Macroplastics

Mixture of everything

Web source

Web source

I. What are we talking about? The many types of floating matter Sargasssum horneri Ulva prolifera

II. What's the logic?

Plastics (A) => image features and/or spectral shapes (Z)

However, in logic, A => Z does not lead to Z => A

This is because we also have B => Z, C => Z, D => Z,

So, unless (B, C, D,) can all be ruled out, we cannot say Z => A

Here, (B, C, D,) also include image or processing artifacts.

III. What's possible?

Once we have Z, how do we rule out (B, C, D,)?

- 1. Direct field validation (very rare)
- 2. Local knowledge
- 3. Spectral similarity

(important and very useful) (sounds easy but very tricky)

III. What's possible? Spectral similarity – why is it so tricky?

3 reasons: Mixed pixels; mixed band resolutions; band registration errors

III. What's possible? Spectral similarity – why is it so tricky?

III. What's possible? Spectral similarity – solutions

1. Mixed pixels

Original:
$$R_T = \chi R_D + (1 - \chi) R_W$$
 (1)
Solution: $\Delta R = R_T - R_w = \chi (R_D - R_W)$ (2)
 $\approx \chi R_D$

2. Mixed band resolutions

- 5 x 5 pixel averaging

3. Band-to-band registration errors _

III. What's possible? Spectral similarity – solutions

III. What's possible? Spectral similarity – applications: pollen in the Baltic Sea

III. What's possible?

Spectral similarity – applications: debris after Hurricane Katrina

Mississippi River delta: mostly driftwood and dead plants, possibly small amount of plastics

III. What's the logic?

Other possibilities are ruled out – these may be called "suspect debris." It may be a little bit stretch to call them "suspect plastics"

III. What's the logic?

The derived spectra must resemble at least one of the known endmembers Among all possibilities, it's not "either A or plastics"

Summary – what' the logic?

- Not every bright pixel is debris, and not every debris pixel is plastics
- Detecting "something" is relatively easy
- Unless other possibilities can be ruled out, we should not call that "something" plastics (a.k.a. **Ocaam's Razor principle**)
- We should not call that "something" "suspect plastics" either, unless such a possibility overwhelms others (e.g., data artifacts, foams, etc)
- Most often, we do not have an "either or" case (e.g., in an environment rich in vegetation, ruling out vegetation does not infer plastics)
- What's possible? Narrow down floating matter type by applying spectral differencing and spectral mixing
- Such logic is also applicable to other techniques (e.g., SAR)
- The real challenge: plastics and some other debris can be similar

Backup slides

Spectral distortion examples

Spectral endmembers based on MSI pixels – spectral shapes appear distorted

0.075 €

0.025

Can SWIR bands help?

SWIR bands do not add much information

Solutions to remove spectral distortions Floating matter features off Italy (Sannigrahi et al., 2022)

Driftwood spectra

The beauty of spectral differencing

1. Spectral differencing (Gower et al., 2006)

OLCI spectra, Qi and Hu (2021)