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Problem Definition
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1. Perform the study and implementation of a novel hyperspectral imaging system;
2. Create a digital hyperspectral imaging database (build a dataset) using manned and unmanned aerial vehicles, in a marine 

litter hotspot, for marine litter detection;
3. Study, develop and implement supervised and unsupervised methods to perform hyperspectral image classification;
4. Development of a novel semi-supervised technique to perform hyperspectral imaging classification of unknown data;
5. Apply the developed methods in a real demonstration scenario and carefully evaluate the obtained results.
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ESAPlastics Project

ESA is looking and fostering the development of spaceborne solutions and campaigns for detecting
and classifying marine litter in the oceans, such as ESAPlastics project:

• Evaluate the state-of-the-art;

• Develop and assemble a remote hyperspectral imaging payload;

• Perform extensive data acquisition using satellite, UAV and manned aircraft in a marine litter
hotspot using artificial (marine litter-based) targets;

• Develop and test post-processing marine litter detection and classification algorithms;

• Perform in-situ analysis with different techniques (FTIR, Raman Spectroscopy, X-Ray
Fluorescence, LIBS);

• Evaluate compressive sensing techniques for developing a single-pixel hyperspectral camera.
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In-situ Marine Litter Samples Characterisation

• Batch of 34 catalogued marine litter samples;

• Structure developed to perform in-situ tests (morning and
afternoon, dry vs samples submerged in seawater);

• Creation of a ground-truth spectral response database.
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Flight Data Acquisition

• Three artificial targets (10 x 10 m – due to the Sentinel 2 MS resolution)
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Dataset Campaign Spectral Characterization Results – F-BUMA

• Normalized radiance
• Absorption peaks

are the same
• Signal attenuation:

• Altitude
• Weather 

differences 
between in-situ and 
airborne tests
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Dataset Campaign Spectral Characterization Results – Grifo-X
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Supervised Approaches for Hyperspectral Imaging Classification
Support Vector Machines (SVM) and Random Forests (RF)

• Class imbalance: we randomly selected some pixels in order to have an identical number of
points for each class (Class 0: 170773; Class 1: 4119 (all); Class 2: 4119; Class 3: 7000

• Feature normalisation: unit variance and zero mean
• Grid search method to fine-tuning both RF and SVM

• SVM: C = 100, kernel RBF, gamma = 0.0001
• RF: Number of trees = 3500, maximum features = log2, maximum depth = 10, minimum number of 

samples in a leaf node = 1, minimum samples required to split an internal node = 5
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Supervised Approaches for Hyperspectral Imaging Classification
SVM and RF Results

9



sara.c.freitas@inesctec.pt

Supervised Approaches for Hyperspectral Imaging Classification
SVM and RF Results Discussion
• The 600 m altitude makes it challenging to annotate ground-truth pixels as “pure” manually. It is

also important to consideer the submerged pixels;

• SVM: able to detect the targets in all flybys, variable values of precision and recall. RF: don’t
detect the three targets in all flybys, precision and recall values more stable;

• Presence of “land” in the targets/presence of the targets in the “land”: class 0 (“land”)
represents a “non-marine litter” class, which suggests the appearance of unknown artefacts of
class 0 that were wrongly classified as class 2 or class 1;

• SVM and RF show potential to be able to detect marine litter, with 0.70 – 0.80 precision values
and few false positives;

Would it be beneficial for the classifier to introduce the spatial information?10
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Supervised Approaches for Hyperspectral Imaging Classification
CNN-3D Spectral/Spatial Marine Litter Detection and Classification

• Input patch: 11 x 11 pixels
• Learning rate: 1-6, decay: 1-6, batch size: 64, epochs: 200
• The first four flybys are used for training, while the last two are used for classification
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Supervised Approaches for Hyperspectral Imaging Classification
CNN-3D Results

Flyby 4

Ground-truth Predictions

Flyby 5
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Supervised Approaches for Hyperspectral Imaging Classification
CNN-3D Results Discussion
• Errors in the ground-truth annotation due to the manual procedure;

• Target water coverage: given the material’s physical properties, there is the possibility that the
targets are partially submerged, especially in the case of the orange target;

• The rope target also absorbs water, making it difficult to distinguish between rope and water
classes;

• This will create mixed pixels that could produce error in some class pixel classifications;

• Overall, CNN-3D showed potential to detect and classify differents types of marine litter, with
overall accuracies of 91.67% and 84.84%.
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Zero-Shot Learning for Marine Litter Detection and Classification

• Marine litter is always changing (sun and water erosion)
• Appearance of new types of marine litter – more data needed to train the model…
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Zero-Shot Learning for Marine Litter Detection and Classification

• Class imbalance

• Feature normalisation

• Low resolution due to flight altitude

• Class 1 can accumulate more water

• Class 3 has gaps in the middle of the target,
and it is composed by two different rope
targets with variable floatability

• The water contains points with high exposure

• Concrete pier: also contains rocks

• Class 6: boats have different hulls, artefacts
inside and different materials

• Camera exposure time15
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Zero-Shot Learning for Marine Litter Detection and Classification
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• Unknown class 1 and 3: recall values
over 57% - (true positive pixels were
higher than this) (class 1 – more than
66%, while class 3 – more than 56%);

• Class 6 (boats): precision over 58%, recall
over 99% - denotes a high number of
true positives, but with some false
positives (present in the water) – low
resolution makes it impossible to
understand what is inside the boats,
leading to ground-truth errors;
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Zero-Shot Learning for Marine Litter Detection and Classification

17

• Class 3 (rope target) exhibits some points
marked as class 6 (boats) – some boats
have ropes inside?

• Camera gain set configured to acquire the
artificial target (sun reflections can result
in overexposure pixels – waves);

• Ground-truth errors.
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Comparison Between SVM, RF, CNN-3D and ZSL Approaches

• SVM, RF, CNN-3D: four classes;

• SVM, RF and ZSL: F-BUMA dataset;

• CNN-3D: Drone dataset.
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Comparison Between SVM, RF, CNN-3D and ZSL Approaches

Class 1 (orange target):

• Similar precision results, even for the ZSL
approach where this class was not given
to the algorithm during the training
stage;

• SVM and RF recall values are lower than
ZSL, when comparing ZSL recall values
with CNN-3D are similar;
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Comparison Between SVM, RF, CNN-3D and ZSL Approaches

Class 2 (white target):

• ZSL known class;

• Similar results for all four approaches;

• SVM presents the worst results, while
CNN-3D the better ones;
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Comparison Between SVM, RF, CNN-3D and ZSL Approaches

Class 3 (rope target):

• Most challenging for all the methods due
to their characteristics (water
absorption, gaps in the middle of the
target);

• CNN-3D performs slightly better;

• ZSL overcomes both SVM and RF
approaches – even considering that this
was one of the classes hidden during the
training stage of the ZSL model!
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Conclusions

1. Dataset and Acquisition Setup
Development of a novel hyperspectral imaging system from 400 to 2500 nm;

2. Dataset acquisition using two aircrafts (UAV and F-BUMA), using three artificial targets placed
in the water and filled with marine litter found in the hotspot.

3. Spectral/Spatial Classification Algorithms (Random Forest, Support Vector Machine and CNN-
3D)

Establishment of a baseline for comparation (RF and SVM);
The three algorithms show that are able to detect and classify marine litter;
The presence of submerged target pixels and ground-truth labelling errors decreases the accuracy of
the methods.
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Conclusions

4. Zero-Shot Learning for Hyperspectral Imaging Marine Litter Detection and Classification
Semi-supervised algorithm able to detect and classify marine litter samples, even from classes that
were not used during the training stage of the model;
To the best of our knowledge, this is the first implementation of a ZSL approach for hyperspectral
imaging and marine litter classification;
The classification precision for both known and unknown classes shown results higher than 56%.

5. Test and evaluation the developed algorithms in the dataset collected in a real scenario.
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Thank you for your attention!
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