Hyperspectral Imaging Analysis for Remote Sensing of Marine Litter

Sara Freitas

October 17, 2023

Remote Sensing of Marine Litter Workshop 2023

Problem Definition

- 1. Perform the study and implementation of a novel hyperspectral imaging system;
- 2. Create a digital hyperspectral imaging database (build a dataset) using manned and unmanned aerial vehicles, in a marine litter hotspot, for marine litter detection;
- 3. Study, develop and implement supervised and unsupervised methods to perform hyperspectral image classification;
- 4. Development of a novel semi-supervised technique to perform hyperspectral imaging classification of unknown data;
- 5. Apply the developed methods in a real demonstration scenario and carefully evaluate the obtained results.

ESAPlastics Project

ESA is looking and fostering the development of spaceborne solutions and campaigns for detecting and classifying marine litter in the oceans, such as ESAPlastics project:

- <u>Evaluate the state-of-the-art;</u>
- <u>Develop and assemble a remote hyperspectral imaging payload;</u>
- Perform extensive data acquisition using satellite, UAV and manned aircraft in a marine litter hotspot using artificial (marine litter-based) targets;
- <u>Develop and test post-processing marine litter detection and classification algorithms;</u>
- Perform in-situ analysis with different techniques (FTIR, Raman Spectroscopy, X-Ray Fluorescence, LIBS);
- Evaluate compressive sensing techniques for developing a single-pixel hyperspectral camera.

In-situ Marine Litter Samples Characterisation

- Batch of 34 catalogued marine litter samples;
- Structure developed to perform in-situ tests (morning and afternoon, dry vs samples submerged in seawater);
- Creation of a ground-truth spectral response database.

Flight Data Acquisition

• Three artificial targets (10 x 10 m – due to the Sentinel 2 MS resolution)

Polyethylene

Polypropylene

Dataset Campaign Spectral Characterization Results – F-BUMA

- Normalized radiance
- Absorption peaks are the same
- Signal attenuation:
 - Altitude
 - Weather differences between in-situ and airborne tests

Dataset Campaign Spectral Characterization Results – Grifo-X

eitas@inesctec.pt

Supervised Approaches for Hyperspectral Imaging Classification Support Vector Machines (SVM) and Random Forests (RF)

- Class imbalance: we randomly selected some pixels in order to have an identical number of points for each class (Class 0: 170773; Class 1: 4119 (all); Class 2: 4119; Class 3: 7000
- Feature normalisation: unit variance and zero mean
- Grid search method to fine-tuning both RF and SVM
 - SVM: C = 100, kernel RBF, gamma = 0.0001
 - RF: Number of trees = 3500, maximum features = log2, maximum depth = 10, minimum number of samples in a leaf node = 1, minimum samples required to split an internal node = 5

Class 0	Class 1	Class 2	Class 3
Water and Land	Orange Plastic	White Plastic	Ropes Target
(Houses, Trees,	Target	Target	
Streets, Cars, and			
Others Materials)			

sara.c.freitas@inesctec.pt

Supervised Approaches for Hyperspectral Imaging Classification SVM and RF Results

Flyby 2 - F-BUMA									
	RF SVM								
Class	Precision	Recall	F1-Score	Accuracy	Precision	Recall	F1-Score	Accuracy	
0	0.99	1	0.99		0.99	0.99	0.99		
1	0.24	0.12	0.16	07 25%	0.75	0.42	0.54	07 47%	
2	0.85	0.42	0.56	91.3370	0.66	0.47	0.55	91.4170	
3	0.18	0.44	0.26	1	0.22	0.50	0.31	1	
			F	lyby 3 - F-B	UMA				
		\mathbf{RF}				5	SVM		
Class	Precision	Recall	F1-Score	Accuracy	Precision	Recall	F1-Score	Accuracy	
0	0.99	1	0.99		0.99	0.99	0.99		
1	0.20	0.13	0.16	97 34%	0.75	0.38	0.51	97.27%	
2	0.85	0.53	0.65	91.5470	0.56	0.43	0.49	51.2170	
3	0.45	0.38	0.41		0.52	0.74	0.61		
			F	lyby 5 - F-B	UMA				
	_	RF					SVM		
Class	Precision	Recall	F1-Score	Accuracy	Precision	Recall	F1-Score	Accuracy	
0	0.99	1	0.99		0.99	0.99	0.99		
1	0.71	0.25	0.37	98.09%	0.77	0.46	0.58	97.06%	
2	0.74	0.62	0.67	30.0370	0.57	0.59	0.58	51.0070	
3	0.38	0.56	0.45		0.21	0.47	0.29		
			F	lyby 6 - F-B	UMA				
		RF					SVM		
Class	Precision	Recall	F1-Score	Accuracy	Precision	Recall	F1-Score	Accuracy	
0	0.99	1	0.99		0.99	0.98	0.98		
1	0.52	0.22	0.31	97.92%	0.71	0.48	0.57	96.56%	
2	0.85	0.59	0.70		0.78	0.67	0.72		
3	0.50	0.42	0.46		0.27	0.51	0.35		
			F	lyby 7 - F-B	UMA				
		RF				5	SVM		
Class	Precision	Recall	F1-Score	Accuracy	Precision	Recall	F1-Score	Accuracy	
0	0.98	1	0.99		1	0.99	0.99		
1	0.01	0	0.01	97.32%	0.50	0.16	0.24	98.01%	
2	0.95	0.45	0.61		0.44	0.72	0.54		
3	0.17	0.01	0.02		0.64	0.76	0.70		
Flyby 8 - F-BUMA									
		RF				5	SVM		
Class	Precision	Recall	F1-Score	Accuracy	Precision	Recall	F1-Score	Accuracy	
0	0.99	0.99	0.99		0.99	0.99	0.99		
1	0.85	0.55	0.66	97.44%	0.10	0.02	0.04	97.28%	
2	0.94	0.36	0.52		0.46	0.55	0.50		
3	0.21	0.35	0.26		0.30	0.51	0.38		

Supervised Approaches for Hyperspectral Imaging Classification SVM and RF Results Discussion

- The 600 m altitude makes it challenging to annotate ground-truth pixels as "pure" manually. It is also important to consideer the submerged pixels;
- SVM: able to detect the targets in all flybys, variable values of precision and recall. RF: don't detect the three targets in all flybys, precision and recall values more stable;
- Presence of "land" in the targets/presence of the targets in the "land": class 0 ("land") represents a "non-marine litter" class, which suggests the appearance of unknown artefacts of class 0 that were wrongly classified as class 2 or class 1;
- SVM and RF show potential to be able to detect marine litter, with 0.70 0.80 precision values and few false positives;

Would it be beneficial for the classifier to introduce the spatial information?

Supervised Approaches for Hyperspectral Imaging Classification CNN-3D Spectral/Spatial Marine Litter Detection and Classification

- Input patch: 11 x 11 pixels
- Learning rate: 1⁻⁶, decay: 1⁻⁶, batch size: 64, epochs: 200
- The first four flybys are used for training, while the last two are used for classification

11

Supervised Approaches for Hyperspectral Imaging Classification **CNN-3D Results**

Flyby 4

0.84

0.54

Recall

0.93

0.78

0.95

0.96

F1-Score

0.95

0.77

0.94

0.80

0.91

0.67

84.84%

91.67%

Precision

0.98

0.75

0.94

0.69

0.98

0.88

Class 0

Class 1

Class 2

Class 3

OA

Class 2

Class 3

OA

Number

of pixels

214882

21852

48505

20421

85579

41870

Flyby	5
-------	---

Supervised Approaches for Hyperspectral Imaging Classification CNN-3D Results Discussion

- Errors in the ground-truth annotation due to the manual procedure;
- Target water coverage: given the material's physical properties, there is the possibility that the targets are partially submerged, especially in the case of the orange target;
- The rope target also absorbs water, making it difficult to distinguish between rope and water classes;
- This will create mixed pixels that could produce error in some class pixel classifications;
- Overall, CNN-3D showed potential to detect and classify differents types of marine litter, with overall accuracies of 91.67% and 84.84%.

Zero-Shot Learning for Marine Litter Detection and Classification

- Marine litter is always changing (sun and water erosion)
- Appearance of new types of marine litter more data needed to train the model...

Zero-Shot Learning for Marine Litter Detection and Classification

- Class imbalance
- Feature normalisation
- Low resolution due to flight altitude
- Class 1 can accumulate more water
- Class 3 has gaps in the middle of the target, and it is composed by two different rope targets with variable floatability
- The water contains points with high exposure
- Concrete pier: also contains rocks
- Class 6: boats have different hulls, artefacts inside and different materials
- Camera exposure time

sara.c.fre	itas@in	esctec.pt
------------	---------	-----------

ID	Description	Example	Number of Pixels
Class 0 (Blue) Known class	Water	•	1279132
Class 1 (Red) Unknown class	Orange target (low density polyethylene)		8118
Class 2 (Green) Known class	White target (White plastic film)		7913
Class 3 (Magenta) Unknown class	Rope target		8375
Class 4 (White) Known class	Concrete pier	9. 	16999
Class 5 (Grey) Known class	Trees		972160
Class 6 (Yellow) Known class	Boats	e Hit	5023

Zero-Shot Learning for Marine Litter Detection and Classification

- Unknown class 1 and 3: recall values over 57% - (true positive pixels were higher than this) (class 1 – more than 66%, while class 3 – more than 56%);
- Class 6 (boats): precision over 58%, recall over 99% - denotes a high number of true positives, but with some false positives (present in the water) – low resolution makes it impossible to understand what is inside the boats, leading to ground-truth errors;

	Class 0 Water Known	Class 1 Orange Target	Class 2 White Target	Class 3 Rope Target	Class 4 Concrete Pier	Class 5 Trees Known	Class 6 Boats Known
	Class	${f Unknown}\ {f class}$	Known Class	Unknown Class	$rac{Known}{class}$	Class	Class
Precision	0.9853	0.6659	0.7508	0.5632	0.9784	0.9927	0.5874
Recall	0.9872	0.6946	0.9960	0.5766	0.9885	0.9927	0.9962
F1-Score	0.9862	0.6800	0.8562	0.5698	0.9834	0.9927	0.7390
OA				98.71%			

sara.c.freitas@inesctec.pt

Zero-Shot Learning for Marine Litter Detection and Classification

	Class 0 Water Known Class	Class 1 Orange Target Unknown class	Class 2 White Target Known Class	Class 3 Rope Target Unknown Class	Class 4 Concrete Pier Known class	Class 5 Trees Known Class	Class 6 Boats Known Class
Precision	0.9853	0.6659	0.7508	0.5632	0.9784	0.9927	0.5874
Recall	0.9872	0.6946	0.9960	0.5766	0.9885	0.9927	0.9962
F1-Score	0.9862	0.6800	0.8562	0.5698	0.9834	0.9927	0.7390
OA				98.71%			

- Class 3 (rope target) exhibits some points marked as class 6 (boats) – some boats have ropes inside?
- Camera gain set configured to acquire the artificial target (sun reflections can result in overexposure pixels – waves);
- Ground-truth errors.

- SVM, RF, CNN-3D: four classes;
- SVM, RF and ZSL: F-BUMA dataset;
- CNN-3D: Drone dataset.

		F-Bur	na flight - Fl	yby over the	artificial tar	gets		
		Bandom F	prost (BF)	Flyby 5	Supr	ort Vector	Machine (S	WM)
Class	Precision	Becall	F1-Score	Accuracy	Precision	Becall	F1-Score	Accuracy
0 Water and Land	0.99	1	0.99	98.09 %	0.99	0.99	0.99	97.06 %
1 Orange target	0.71	0.25	0.37		0.77	0.46	0.58	
2 White target	0.74	0.62	0.67		0.57	0.59	0.58	
3 Rope target	0.38	0.56	0.45		0.21	0.47	0.29	
			F-BU	MA Flight -	ZSL			
Class	0 Water Known class	1 Orange target Unknown class	2 White target Known class	3 Rope target Unknown class	4 Concrete pier Known class	5 Boats Known class	6 Boats Known class	Accuracy
Precision	0.9853	0.6659	0.7508	0.5632	0.9784	0.9927	0.5874	
Recall	0.9872	0.6946	0.9960	0.5766	0.9885	0.9927	0.9962	98.71 %
F1-Score	0.9862	0.6800	0.8562	0.5698	0.9834	0.9927	0.7390	
			Drone	Flight - CN	N3D			
				Flyby 4			q	
CI	ass	Preci	sion	Re	call	F1-	Score	Accuracy
17/0	J	0.9	98	0.	93	0	.95	
Oratar	l unge get	0.7	75	0.	78	C).77	91.67 %
Wi tar	2 nite get	0.9	94	0.	95	C	.94	
Ro tar	3 ope get	0.6	39	0.	96	0	0.80	
	0.66	Duc -	sion	Flyby 5	aall	E1	Saoro	Acourses
CI	ass	Preci	sion	Re	can	F.1-	Score	Accuracy
Wa	ter	0.8	33	0.	97	0	.90	
Ora tar	l inge get	0.6	32	0.	50	0	0.55	84.84 %
Wi tar	2 nite get	0.9	98	0.	84	C	0.91	
Ro tar	3 ope get	0.8	38	0.	54	0	0.67	

Class 1 (orange target):

- Similar precision results, even for the ZSL approach where this class was not given to the algorithm during the training stage;
- SVM and RF recall values are lower than ZSL, when comparing ZSL recall values with CNN-3D are similar;

F-Buma flight - Flyby over the artificial targets								
Flyby 5								
Random Forest (RF)				Supp	ort Vector	· Machine (S	SVM)	
Class	Precision	Recall	F1-Score	Accuracy	Precision	Recall	F1-Score	Accuracy

,	F-BUMA Flight - ZSL						
Class	1 Orange target Unknown class						
Precision Recall F1-Score	0.6659 0.6946 0.6800						
	Dro	one Flight - CNN3D	•				
		Flyby 4					
Class	Precision	Recall	F1-Score	Accuracy			
			1				
1 Orange target	0.75	0.78	0.77				

Flyby 5							
Class	Precision	Recall	F1-Score	Accuracy			
1				1			
Orange	0.62	0.50	0.55				
target							

Class 2 (white target):

F-Buma flight - Flyby over the artificial targets								
Flyby 5								
Random Forest (RF)				Support Vector Machine (SVM)				
Class	Precision	Recall	F1-Score	Accuracy	Precision	Recall	F1-Score	Accuracy

- ZSL known class;
- Similar results for all four approaches;
- SVM presents the worst results, while CNN-3D the better ones;

			-				
2							
\mathbf{White}	0.74	(0.62)	0.67		0.57	(0.59)	0.58
target							
				· ·			

F-BUMA Flight - ZSL								
Class	W ta Kn cl	2 hite rget hown lass						
Precision	0.7	7508						
Recall	0.9	9960						
F1-Score	0.8	8562						
Drone Flight - CNN3D								
Flyby 4								
Class	Precision	Recall	F1-Score	Accuracy				

Flyby 5								
Class	Precision	Recall	F1-Score	Accuracy				

Class 3 (rope target):

- Most challenging for all the methods due to their characteristics (water absorption, gaps in the middle of the target);
- CNN-3D performs slightly better;
- ZSL overcomes both SVM and RF approaches – even considering that this was one of the classes hidden during the training stage of the ZSL model!

F-Buma flight - Flyby over the artificial targets								
Flyby 5								
Random Forest (RF)					Support Vector Machine (SVM)			
Class	Precision	Recall	F1-Score	Accuracy	Precision	Recall	F1-Score	Accuracy

Conclusions

1. Dataset and Acquisition Setup

Development of a novel hyperspectral imaging system from 400 to 2500 nm;

- 2. Dataset acquisition using two aircrafts (UAV and F-BUMA), using three artificial targets placed in the water and filled with marine litter found in the hotspot.
- Spectral/Spatial Classification Algorithms (Random Forest, Support Vector Machine and CNN-3D)

Establishment of a baseline for comparation (RF and SVM);

The three algorithms show that are able to detect and classify marine litter;

The presence of submerged target pixels and ground-truth labelling errors decreases the accuracy of the methods.

Conclusions

L. Zero-Shot Learning for Hyperspectral Imaging Marine Litter Detection and Classification

Semi-supervised algorithm able to detect and classify marine litter samples, even from classes that were not used during the training stage of the model;

To the best of our knowledge, this is the first implementation of a ZSL approach for hyperspectral imaging and marine litter classification;

The classification precision for both known and unknown classes shown results higher than 56%.

5. Test and evaluation the developed algorithms in the dataset collected in a real scenario.

Hyperspectral Imaging Analysis for Remote Sensing of Marine Litter

Sara Freitas

sara.c.freitas@inesctec.pt

Thank you for your attention!

