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Introduction NANS SAT LAB

*  Over 14 million tons of plastic end up yearly in the
ocean. Due to currents and gyros, freely floating
plastic debris end up forming large extensions of
garbage patches’.

= Recent works? have studied the potential of
GNSS-R to detect marine litter. The main
hypothesis seems to be:
1)  Plastics foster the appearance of biofouling
2)  This increases the water surface tension
3) Theincreased surface tension dampens the waves
4) A sudden dampening affects GNSS-R observables

* The ESA GLIMPS (Global Monitoring of Microplastics using GNSS-R) project, led by Deimos Space UK
together with the Universitat Politécnica de Catalunya.

: Conducted a GNSS-R experiment in 2021 in the Deltares’ Atlantic basin, a controlled water flume in Delft, The Netherlands.
= Studied the potential of GNSS-R for marine litter detection in controlled conditions
. One of many teams employing a variety of remote sensing techniques.

[1] Lebreton, L.; Slat, B.; Ferrari, F.; Sainte-Rose, B.; Hajbane, S.; Cunsolo, S.; Schwarz, A.; Levivier, A.; Noble, K.; Debeljak, P.; et al. Evidence that the Great Pacific Garbage
Patch is rapidly accumulating plastic. Sci. Rep. 2018, 8, 4666. 2
[2] Evans, M.C.; Ruf, C.S. Toward the Detection and Imaging of Ocean Microplastics With a Spaceborne Radar. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4202709.



Indoors GNSS-R Geometry Set-Up - Introduction NAN@ SAT LAB

Conventional GNSS-R GNSS-R set-up built at Deltares

= Geometry of a GNSS-R scenario is difficult to simulate in a closed space and constrained by the
location of the flume.

=  There were also other requirements that involved minimizing the interference to the waves’ patterns
(underwater supports), and to other teams performing their experiments (metallic surfaces close to
the plastics).

=  QOther quality-diminishing factors such as an uncontrolled RF spectrum and severe multi-path were
observed.



Indoors GNSS-R Geometry Set-Up - Transmission NAN@ SAT LAB

=  Transmission side

= In order to simulate different grazing angles and elevations, multiple transmitting
antennas are used, connected to the same SDR, with variable attenuations and a
switching matrix to decide the current transmission path.

= The transmitted signal includes synchronization beacons and a synthetic L1 C/A signal
with SVs 16, 21, 29, and 31, recorded from a vector signal generator at a power level of
-81 dBm.

= All antennas used were COTS patch antennas except the ones used at 45° which were
manufactured in house.

4-Port Switch
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Indoors GNSS-R Geometry Set-Up - Reception NAN@ SAT LAB

=  Reception side

= Two patch antennas were used; one upward oriented (Up-looking) and an other downward
oriented (Down-looking).

= Due to limitations of the system, we could not implement a single receiver with three or
more coherent reception ports. For this reason, two independent SDR were used.

= The up-looking antenna was connected to a one-channel SDR for down-converting and
sampling the received signal at a rate of f;=2.5 MSps.

= The down-looking antenna was connected to a two-channel SDR for down-converting and
sampling the received signal at a rate of f;=2.046 MSps.

Frequency [MHz] Polarization Active/Passive
Up-looking 1540 - 1610 RHCP Passive
Down-looking 1500 - 1600 RHCP/LHCP Active

Reception antennas’ specifications

Overview of the setup built at Deltares 5



Experiments performed NAN@ SAT LAB

The Atlantic basin flume could generate
both periodic sinusoidal-shaped waves, or
a more realistic JONSWAP spectrum
which takes into account wind effects or
wave-to-wave interactions.
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= Multiple types of plastics were used, and
the response of the system to each type
(and concentration) was analyzed.



123 files analyzed

Processing steps:

Large CNO (35-50 dBHz) allows for short integration times: T, =
Relative calibration using flat water surface (known reflection coefficients)

Data screening:

Multi-path: P, not constant (up-looking antenna), P,.«(P4;) not an horizontal line

RFI: either in up-looking and/or down-looking antennas

Computation of DDM peak: modulus (power) and phase saved for RHCP up-looking, and LHCP

Methodology NAN@ SAT LAB
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Results
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=  Effect of the incidence angle on the distribution of the reflection coefficient.

Fpy (red) & Ty (blug) [dB]

1.9448, o = 46412, k = 3.1979 and sk =-0.73222
0.3966 and s 1.9476

005 —

30°

004 -

003 -

002 -

oot -

ol | | I | |
60 50 40 -30 20 <10 o 1
[dB]
Tg (red) & T g (blue) [4B]

LHCP: mean = -2.0213, » = 31277, k = 3.6014 and sk = -0.49525
RHCP: mean = -24.1198, o = 52154, k = 2.5129 and sk =-0.223

45°

0.035

003 - 1

0.025

0.02

0.015

001 - 4

0.005
<40 35 30 25 20 A5 10 5 0 5
ie8l
Tp (red) & T (blue) [dB]

LHCP: mean = -2.305, o = 3.8485, k = 6.1277 and sk = -1.6229
RHCP: mean = -17.858, » = 7.6223. k = 2.7821 and sk = -0.84844
= £ = - - r -

60°

006

004

003

SR 9 1T 090
40 35 30 25 20 15 10 5 S
(¢B)

B

Ty, (red) & T (blue) [dB]

LHCP: mean = -1.9448, » = 50263, k = 2.8660 and sk = 0.63202 4 5
RHCP: mean = -31 8381, = = 4 9911, k = 3 6569 and sk = -0.94981

Ty (red) & T (blue) [dB]

LHCP: mean = -2.0213, o = 2.96891, k = 4.8646 and sk = -1.4226
RHCP: mean = -24.1198, = = 4.7952, k = 2.02 and sk = 0.007633

T (red) & T (blue) [dB]

LHCP: mean = -2.305, o = 3.4468, k = 1.9645 and sk = -0.44232
RHCP: mean = -17 858, » = 56511, k = 2.4631 and sk =-0.61591

0.04 005
ol
008 003 0o
003 -
0.04 - 1 002 -
00z -
dll | 001 F 001 -
0 L L L 0 | ' L L L i 0 i i
40 -30 20 =10 0 10 35 30 25 20 15 10 5 0 <0 25 20 15 10 5 0
[dB] [dB] [dB]

| 60°

LHCP

LHCP

Elevation
Refl it_:tlon

60 30°

Azithuth
Reflection



Results - Baseline
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Results - Baseline
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Results - Plastics
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Results - Plastics NANS SAT LAB
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Results - Summary NAN@ SAT LAB
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Results — Summary table
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 Scenario Amplitude T e

Surface roughness T = o(Al'y,) ~ -9 dB
Capillary waves T = o(Alz) ~-1-1.5dB
Kurt varies in both cases

Clean water

(flat/rough)
sin/JONSWAP

o(Alg) T ~ 2.5-3 dB with net and bottles,
Bottles and fixed net ~ 0.4 dB with net only

Kurt

T by ~0.8 dB @ 60°
o(ATR,) T ~0.8-1.2 dB @ 30° and 45°
Kurt T ~2 @ 30°and 45°

Bottles

o(Alg): ¥+ by 0.8 dB at 5cm rms

T by 1.8dB at 9 cm rms

I by0.4dBat17 cmrms
Capillary waves damp increase of reflectivity
fluctuations

Marine litter
o(Alg): Thy1.4dB
nets
 Styrofoam 00|

Caps and lids

Marine litter

(food wraps and bags)

Sharp decrease o 5 With increasing rms height
and presence of capillary waves
Kurt and Skew: T long waves

™ long and capillary waves

6 4 rry SMaller for sinusoidal
No clear trend

o ey T 0.6°-0.8°
Marginal effect on other observables

oy T:0.7-0.8°

O /|rRL|

T by ~0.2° and ~1.1° @30° and 45°
{ by ~4.5° @ 60°

Marginal

Sy ¥ BY ~1.4° @ 5 cm rms,
T by ~1.17° @ 9 cm rms and
4 by ~0.3°@ 17 cm rms

o ray T 1.6° @ 30°
o ray T2 0.5° @ 30° (marginal)

o ey T 0.9° @ 30°
1.7° if capillary waves

o rry T 0.3° @ 30° (marginal)

Gonga, A.; Pérez-Portero, A.; Camps, A.; Pascual, D.; de Fockert, A.; de Maagt, P.
GNSS-R Observations of Marine Plastic Litter in a Water Flume: An Experimental Study. Remote Sens. 2023, 15, 637. https://doi.org/10.3390/rs15030637
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Conclusion NANS SAT LAB

= Observables which can be potentially used for marine litter detection:

= Standard deviation of estimated reflectivity (or received signal power, or DDM peak).

= Decreases sharply when there are waves, and increases a bit when capillary waves are
present.

= In general, it increases when there is marine litter.

= Standard deviation of the phase (phase of peak of DDM, if no incoherent averaging) can
also be used.

= Kurtosis and Skewness (in some cases).

= Results extrapolation to airborne and spaceborne cases is not straightforward:
= Different surface roughness in vortices (regardless of the presence -or not- of plastics)
= Confirming the presence of biofouling and increased wave damping
= Increased integration times from spaceborne sensors
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