

A controlled ground-based experiment to assess the capabilities of GNSS-R for marine litter detection in a flume

Amadeu Gonga^{1,2} Adrian Perez-Portero^{1,2}, Adriano Camps^{1,2,3}, Daniel Pascual⁴, Anton de Fockert⁵, and Peter de Maagt⁶

1. CommSensLab – UPC, Dept. of Signal Theory and Communications, Universitat Politècnica de Catalunya – BarcelonaTech, E-08034 Barcelona, Spain

- 2. Institute of Space Studies of Catalonia (IEEC) CTE-UPC, E-08034 Barcelona, Spain
- 3. ASPIRE Visiting International Professor, UAE University, CoE, POBox 15551 Al-Ain, UAE
- 4. Deimos Space UK Ltd, United Kingdom
- 5. Deltares, Delft, the Netherlands
- 6. ESTEC, Noordwijk, the Netherlands

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Introduction

- Over 14 million tons of plastic end up yearly in the ocean. Due to currents and gyros, freely floating plastic debris end up forming large extensions of garbage patches¹.
- Recent works² have studied the potential of GNSS-R to detect marine litter. The main hypothesis seems to be:
 - 1) Plastics foster the appearance of biofouling
 - 2) This increases the water surface tension
 - 3) The increased surface tension dampens the waves
 - 4) A sudden dampening affects GNSS-R observables

Amadeu recovering some of the plastics used in one of the tests at Deltares

- The ESA GLIMPS (Global Monitoring of Microplastics using GNSS-R) project, led by Deimos Space UK together with the Universitat Politècnica de Catalunya.
 - Conducted a GNSS-R experiment in 2021 in the Deltares' Atlantic basin, a controlled water flume in Delft, The Netherlands.
 - Studied the potential of GNSS-R for marine litter detection in controlled conditions
 - One of many teams employing a variety of remote sensing techniques.

 Lebreton, L.; Slat, B.; Ferrari, F.; Sainte-Rose, B.; Hajbane, S.; Cunsolo, S.; Schwarz, A.; Levivier, A.; Noble, K.; Debeljak, P.; et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci. Rep. **2018**, 8, 4666.
 Evans, M.C.; Ruf, C.S. Toward the Detection and Imaging of Ocean Microplastics With a Spaceborne Radar. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4202709.

Indoors GNSS-R Geometry Set-Up - Introduction

NAN 🗇 SAT LAB

Conventional GNSS-R

GNSS-R set-up built at Deltares

- Geometry of a GNSS-R scenario is difficult to simulate in a closed space and constrained by the location of the flume.
- There were also other requirements that involved minimizing the interference to the waves' patterns (underwater supports), and to other teams performing their experiments (metallic surfaces close to the plastics).
- Other quality-diminishing factors such as an uncontrolled RF spectrum and severe multi-path were observed.

- Transmission side
 - In order to simulate different grazing angles and elevations, multiple transmitting antennas are used, connected to the same SDR, with variable attenuations and a switching matrix to decide the current transmission path.
 - The transmitted signal includes synchronization beacons and a synthetic L1 C/A signal with SVs 16, 21, 29, and 31, recorded from a vector signal generator at a power level of -81 dBm.
 - All antennas used were COTS patch antennas except the ones used at 45° which were manufactured in house.

	Angle [º]	Frequency [MHz]	Polarization	Active/Passive
Elevation	30	1540 - 1610	RHCP	Passive
	45	1490 - 1700	RHCP/LCHP	Active
	60	1540 - 1610	RHCP	Passive
Azimuth	30	1540 - 1610	RHCP	Passive
	45	1530 - 1580	RHCP/LHCP	Active
	60	1540 - 1610	RHCP	Passive

Transmission antennas' specifications

Transmitter block diagram

- Reception side
 - Two patch antennas were used; one upward oriented (Up-looking) and an other downward oriented (Down-looking).
 - Due to limitations of the system, we could not implement a single receiver with three or more coherent reception ports. For this reason, two independent SDR were used.
 - The up-looking antenna was connected to a one-channel SDR for down-converting and sampling the received signal at a rate of f_s=2.5 MSps.
 - The down-looking antenna was connected to a two-channel SDR for down-converting and sampling the received signal at a rate of f_s =2.046 MSps.

	Frequency [MHz]	Polarization	Active/Passive
Up-looking	1540 - 1610	RHCP	Passive
Down-looking	1500 - 1600	RHCP/LHCP	Active

Reception antennas' specifications

Overview of the setup built at Deltares

Experiments performed

The Atlantic basin flume could generate both periodic sinusoidal-shaped waves, or a more realistic JONSWAP spectrum which takes into account wind effects or wave-to-wave interactions.

- Multiple types of plastics were used, and the response of the system to each type (and concentration) was analyzed.

- 123 files analyzed
- Processing steps:
 - Large CN0 (35-50 dBHz) allows for short integration times: T_{coh} = 1 ms, N_{inc} = 1
 - **Relative calibration** using flat water surface (known reflection coefficients)
 - Data screening:
 - Multi-path: P_{dir} not constant (up-looking antenna), P_{ref}(P_{dir}) not an horizontal line
 - **RFI**: either in up-looking and/or down-looking antennas
 - Computation of DDM peak: modulus (power) and phase saved for RHCP up-looking, and LHCP & RHCP down-looking antennas

Results

 Γ_{RL} (red) & Γ_{RR} (blue) [dB]

-20 -15 -10

[dB]

Effect of the incidence angle on the distribution of the reflection coefficient.

Results - Baseline

NAN�SAT LAB

No plastic, rough water surface

Results - Baseline

NAN 🏵 SAT LAB

No plastic, rough water surface, with <u>capillary waves</u>

Results - Plastics

NAN 🗇 SAT LAB

Bottles and fixed net

Bottles

Marine litter (nets)

Results - Plastics

Marine litter (bags)

Marine litter (caps & lids) _____

Straws

Results - Summary

- Results show that the different plastics resulted in different distributions of both the Right-to-Left and Left-to-Right polarizations.
- The statistical analysis on the different scenarios showed that, although very faint, a difference between them could be observed over long experiments.
- Since most changes are marginal, a statistical analysis was performed both for the amplitude and phase of the reflection coefficients, and statistical descriptors are used as an indication.

Results – Summary table

NAN 🗘 SAT LAB

Scenario	Amplitude	Phase
Clean water (flat/rough)	Surface roughness $\uparrow \Rightarrow \sigma(\Delta\Gamma_{RL}) \sim -9 \text{ dB}$ Capillary waves $\uparrow \Rightarrow \sigma(\Delta\Gamma_{RL}) \sim -1-1.5 \text{ dB}$	Sharp decrease $\sigma_{\angle \Gamma RL }$ with increasing rms height and presence of capillary waves Kurt and Skew: \uparrow long waves
	Kurt varies in both cases	↑↑ long and capillary waves
Clean water	Different temporal behavior	σ_{ZICRLI} smaller for sinusoidal
(sin/JONSWAP)	$\sigma(\Gamma_{\text{RL Jonswap}}) < \sigma(\Gamma_{\text{RL sinusoidal}})$ by ~0.2-0.4 dB	No clear trend
Bottles and fixed net	$ σ(\Delta \Gamma_{RL}) \uparrow \sim 2.5-3 \text{ dB with net and bottles,} ~ 0.4 \text{ dB with net only} $ Kurt \uparrow	$\sigma_{\mbox{\tiny \sc l}\Gamma RLl}$ \uparrow 0.6°- 0.8° Marginal effect on other observables
Straws	σ(ΔΓ _{RL}) ↓ by ~2-2.5 dB @ 30° ↑ by ~0.8 dB @ 60°	$σ_{∠ ΓRL }$ ↑: 0.7-0.8 °
Pellets	σ(ΔΓRL) ↑ ~0.8-1.2 dB @ 30° and 45° Kurt ↑ ~2 @ 30° and 45°	σ _{∠ ΓRL} ↑ by ~0.2° and ~1.1° @30° and 45° ↓ by ~4.5° @ 60°
Bottles	σ(ΔΓ _{RL}): ↑ by 0.8 dB	Marginal
Marine litter	$\sigma(\Delta\Gamma_{RL}): \downarrow \text{ by } 0.8 \text{ dB at } 5 \text{ cm rms}$ $\uparrow \text{ by } 1.8 \text{ dB at } 9 \text{ cm rms}$ $\downarrow \text{ by } 0.4 \text{ dB at } 17 \text{ cm rms}$	$\sigma_{\angle \Gamma RL } \downarrow$ by ~1.4° @ 5 cm rms, ↑ by ~1.1° @ 9 cm rms and
(1000 wraps and bays)	Capillary waves damp increase of reflectivity	↓ by ~0.3° @ 17 cm rms
Marine litter (nets)	$\sigma(\Delta \Gamma_{\rm RL})$: ↑ by 1.4 dB	σ _{∠ ΓRL} ↑: 1.6° @ 30°
Styrofoam	σ(ΔΓ _{RL}): ↑ by 0.7 dB	$\sigma_{ m < I \Gamma RLl}$ \uparrow : 0.5° @ 30° (marginal)
Caps and lids	$\sigma(\Delta\Gamma_{RL}): \uparrow$ by 0.4 dB Capillary waves damp increase of reflectivity fluctuations	$\sigma_{\angle \Gamma RL }$ ^: 0.9° @ 30° 1.7° if capillary waves
Nets	σ(ΔΓ _{RL}): ↑ by 0.6 dB	$\sigma_{ m 2 \Gamma RL }$ \uparrow : 0.3° @ 30° (marginal)

Gonga, A.; Pérez-Portero, A.; Camps, A.; Pascual, D.; de Fockert, A.; de Maagt, P.

GNSS-R Observations of Marine Plastic Litter in a Water Flume: An Experimental Study. Remote Sens. 2023, 15, 637. https://doi.org/10.3390/rs15030637

- Observables which can be potentially used for marine litter detection:
 - Standard deviation of estimated reflectivity (or received signal power, or DDM peak).
 - Decreases sharply when there are waves, and increases a bit when capillary waves are present.
 - In general, it increases when there is marine litter.
 - Standard deviation of the phase (phase of peak of DDM, if no incoherent averaging) can also be used.
 - Kurtosis and Skewness (in some cases).
- Results extrapolation to airborne and spaceborne cases is not straightforward:
 - Different surface roughness in vortices (regardless of the presence -or not- of plastics)
 - Confirming the presence of biofouling and increased wave damping
 - Increased integration times from spaceborne sensors

Thank you for your attention!

amadeu.gonga@upc.edu adrian.perez.portero@upc.edu adriano.jose.camps@upc.edu