

Large-Scale Marine Debris Detection with Sentinel-2

Marc Rußwurm, Sushen Jilla Venkatesa, Laura Pasero, Dilge Gül, Devis Tuia

Research question:

How to use modern machine learning for automatic detection of generic marine debris with publicly available satellite imagery?

oti

(South Africa)

Image: Lisa Guastella

Bay of Biscay, France Image: Oihane Basurko though

an abundance of satellite data is freely available:

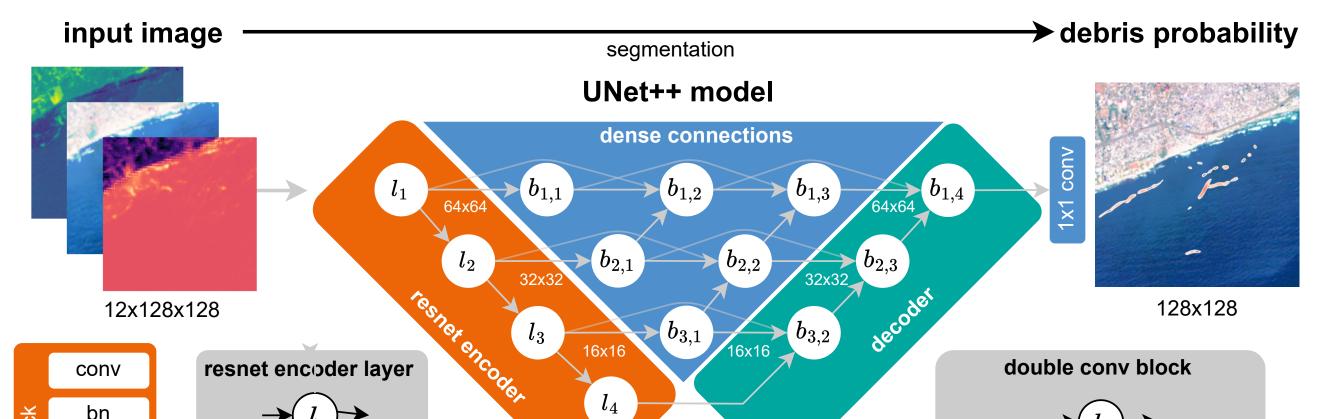
Sentinel-2, PlanetScope

Approach:

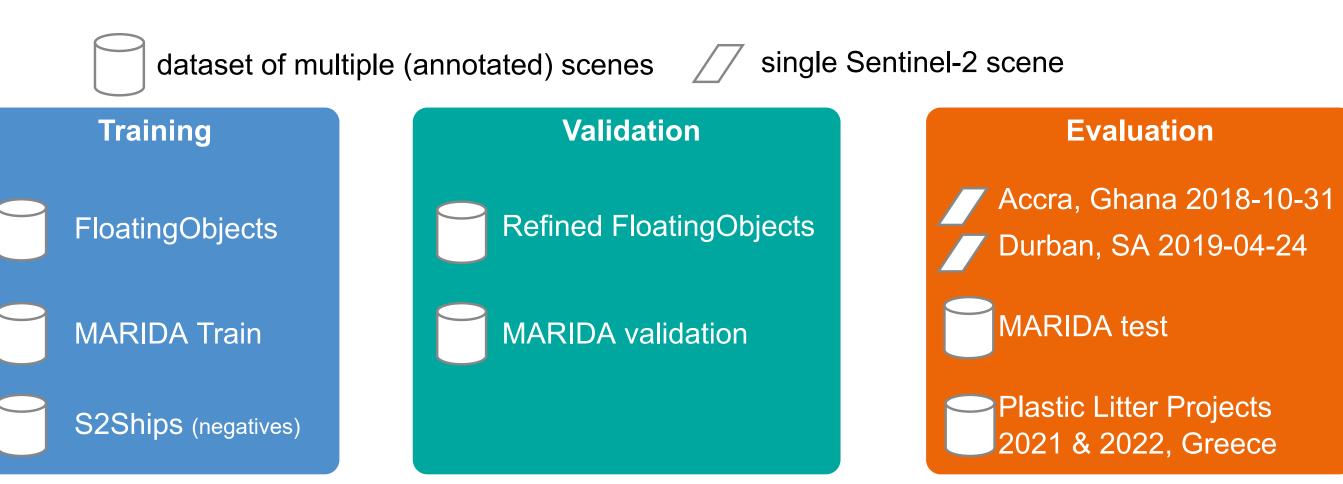
Explore Data-Centric Machine Learning (DCAI) principles for large-scale marine debris detection

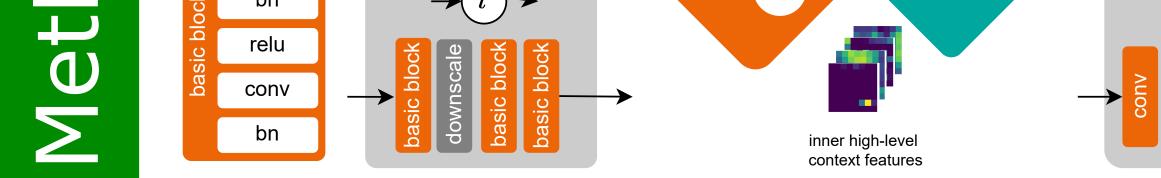
UNet and UNet++ segmentation models

Estimate a probability for "marine debris" for each image pixel



trained on a quantity-; evaluated on quality-focused datasets





various objects, high diversity, mixed annotation quality

mixed, objects (likely of natural origins), high point-wise annotation quality

high plastic probability, high point-wise annotation quality

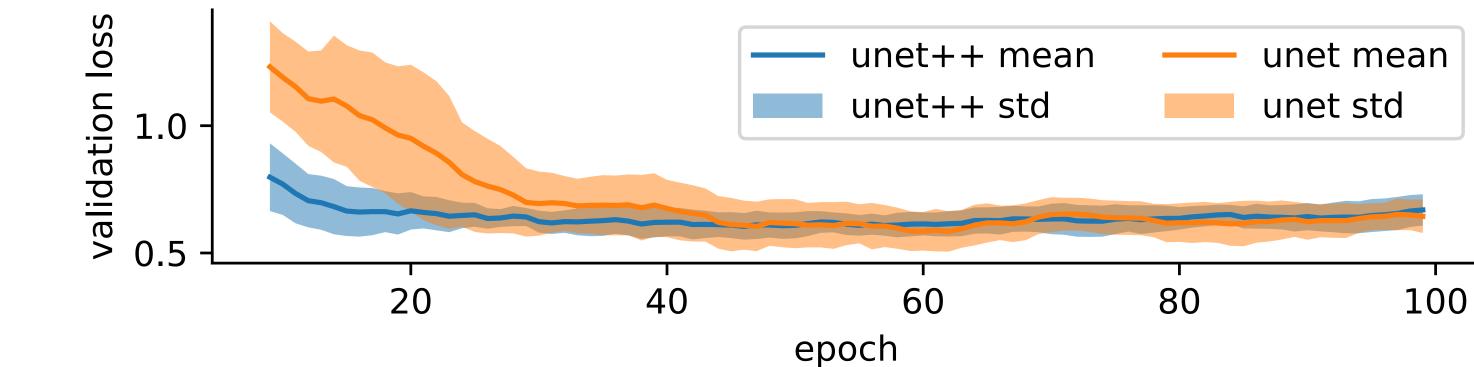
likelihood of plastic debris and quality of annotations

In accordance with data-centric machine learning

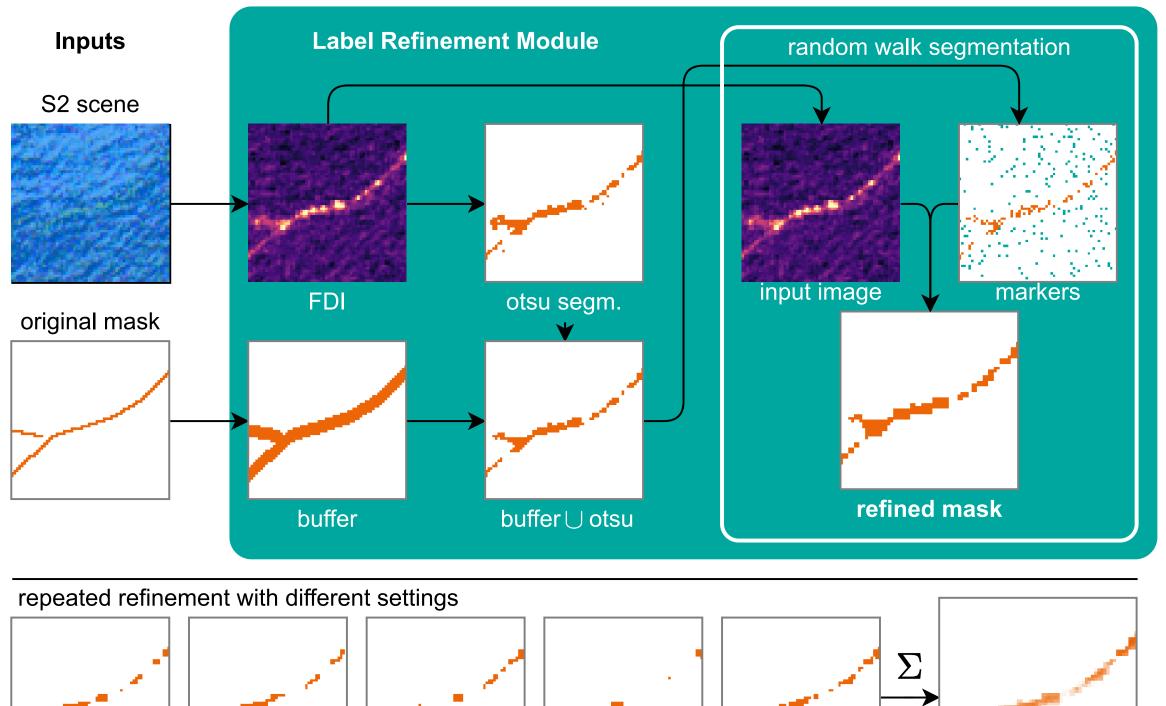
six principles according to Jarrahi et al., 2023:

1) data-fit 2) data consistency 3) iterative process 4) reflect local context 5) meet needs of local stakeholders 6) exchange between ML and domain experts

both UNet++ and UNet deep learning models result in similar accuracy:



Example: Improving data-fit (principle 1) with label refinement



S

Π

σ

automated label refinement had greater impact on accuracy (see no-ref)

trained on	original data		our train set			
	RF	UNET	RF	UNET	UNET++	UNET++ no-ref
ACCURACY	0.697	0.838	0.811	0.865 ± 0.006	$\textbf{0.867} \pm 0.005$	0.851 ± 0.006
F-SCORE	0.288	0.701	0.708	0.741 ± 0.012	0.749 ± 0.009	0.710 ± 0.015
AUROC	0.488	0.764	0.862	0.738 ± 0.012	0.746 ± 0.021	0.733 ± 0.006
JACCARD	0.168	0.539	0.548	0.589 ± 0.015	0.598 ± 0.012	0.551 ± 0.018
KAPPA	0.197	0.593	0.569	0.654 ± 0.016	0.661 ± 0.012	0.615 ± 0.017

Contact

Model & Sources

Marc Rußwurm Wageningen University Assistant Professor ML & RS

github.com/marccoru/marinedebrisdetector

References

- Rußwurm M, Venkatesa J. S., Tuia D. (2023) Large-scale Detection of Marine Debris in Coastal Areas with Sentinel-2. To appear in Cell iScience.
- Mifdal, J., Longépé, N., & Rußwurm, M. (2021). Towards detecting floating objects on a global scale with learned spatial features using sentinel 2. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 285-293.
- Ruiz, I., Basurko, O. C., & Rubio, A. (2022). Modelling the distribution of fishing-related floating marine litter within the Bay of Biscay and its marine protected areas. Environmental Pollution, 292, 118216.
- Jarrahi, M. H., Memariani, A., & Guha, S. (2023). The Principles of Data-Centric AI. Communications of the ACM

marc.russwurm@wur.nl